全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Immediate Effects of Orthoses on Pain in People with Lateral Epicondylalgia

DOI: 10.1155/2013/353597

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Tennis elbow is a common cause of upper limb dysfunction and a primary reason for pain at the lateral aspect of the elbow. The purpose of this study was to investigate the effects of three commonly used orthoses on pain severity. An elbow band, an elbow sleeve, and a wrist splint were assessed for their ability to reduce the level of reported pain. Method. A crossover randomized controlled trial was used. The orthoses were worn in a randomized order, and all participants were required to complete a control trial for which they wore a placebo orthosis. 52 participants with lateral epicondylalgia were recruited, and the level of pain at their elbow was recorded using the visual analogue scale (VAS). Results. The reported pain for all orthoses was lower than that of the placebo ( ). Pain reduction was significantly greater with a counterforce elbow band or a counterforce elbow sleeve compared to a wrist splint ( ). There was no significant difference between a counterforce elbow band and a counterforce elbow sleeve ( ). Conclusion. All the types of orthoses studied showed an immediate improvement on pain severity in people with lateral epicondylalgia. The counterforce elbow orthoses (elbow band and elbow sleeve) presented the greatest improvement, suggesting that either of them can be used as a first treatment choice to alleviate the pain in people with tennis elbow. 1. Introduction Lateral epicondylalgia, or tennis elbow, is a painful condition associated with repetitive strains of the wrist extensor tendons [1–4]. This overuse syndrome is characterised by pain and tenderness below the lateral epicondyle, which is exacerbated when subjected to a resisted wrist extension [1]. People who engage in the repetitive hand tasks are more susceptible to this type of injury [5–7]. This injury occurs in 1–3% of the general population [8]; however, this increases to more than 50% in tennis players, a population that use regular repetitive hand functions [9]. The cause of the lesion is believed to be the overloading of the wrist extensors’ common origin at the lateral aspect of the elbow [3]. There are numerous treatment modalities employed for lateral epicondylalgia, including orthotics. The main objective in orthotic therapy is to target the cause of the lesion by reducing the overloading strains on the common origin of the wrist extensors [10, 11]. A number of strategies were reported to achieve this goal and several orthotic approaches have been used accordingly. An elbow band (strap) is a common device which is worn below the elbow. It applies a

References

[1]  E. M. Chumbley, F. G. O'Connor, and R. P. Nirschl, “Evaluation of overuse elbow injuries,” American Family Physician, vol. 61, no. 3, pp. 691–700, 2000.
[2]  G. W. Johnson, K. Cadwallader, S. B. Scheffel, and T. D. Epperly, “Treatment of lateral epicondylitis,” American Family Physician, vol. 76, no. 6, pp. 843–853, 2007.
[3]  B. S. Kraushaar and R. P. Nirschl, “Tendinosis of the elbow (Tennis elbow): clinical features and findings of histological, immunohistochemical, and electron microscopy studies,” Journal of Bone and Joint Surgery A, vol. 81, no. 2, pp. 259–278, 1999.
[4]  D. Levin, L. N. Nazarian, T. T. Miller et al., “Lateral epicondylitis of the elbow: US findings,” Radiology, vol. 237, no. 1, pp. 230–234, 2005.
[5]  K. H. E. Kroemer, “Cumulative trauma disorders: their recognition and ergonomics measures to avoid them,” Applied Ergonomics, vol. 20, no. 4, pp. 274–280, 1989.
[6]  L. Dimberg, “The prevalence and causation of tennis elbow (lateral humeral epicondylitis) in a population of workers in an engineering industry,” Ergonomics, vol. 30, no. 3, pp. 573–580, 1987.
[7]  R. Shiri and E. Viikari-Juntura, “Lateral and medial epicondylitis: role of occupational factors,” Best Practice and Research, vol. 25, no. 1, pp. 43–57, 2011.
[8]  R. Shiri, E. Viikari-Juntura, H. Varonen, and M. Heli?vaara, “Prevalence and determinants of lateral and medial epicondylitis: a population study,” American Journal of Epidemiology, vol. 164, no. 11, pp. 1065–1074, 2006.
[9]  L. D. Field and F. H. Savoie, “Common elbow injuries in sport,” Sports Medicine, vol. 26, no. 3, pp. 193–205, 1998.
[10]  C. T. Wadsworth, D. H. Nielsen, L. T. Burns, J. D. Krull, and C. G. Thompson, “Effect of the counterforce armband on wrist extension and grip strength and pain in subjects with tennis elbow,” Journal of Orthopaedic and Sports Physical Therapy, vol. 11, no. 5, pp. 192–197, 1989.
[11]  C. D. Borkholder, V. A. Hill, and E. E. Fess, “The efficacy of splinting for lateral epicondylitis: a systematic review,” Journal of Hand Therapy, vol. 17, no. 2, pp. 181–199, 2004.
[12]  F. S. Jafarian, E. S. Demneh, and S. F. Tyson, “The immediate effect of orthotic management on grip strength of patients with lateral epicondylosis,” Journal of Orthopaedic and Sports Physical Therapy, vol. 39, no. 6, pp. 484–489, 2009.
[13]  N. Van Elk, M. Faes, H. Degens, J. G. M. Kooloos, J. A. De Lint, and M. T. E. Hopman, “The application of an external wrist extension force reduces electromyographic activity of wrist extensor muscles during gripping,” Journal of Orthopaedic and Sports Physical Therapy, vol. 34, no. 5, pp. 228–234, 2004.
[14]  P. A. A. Struijs, N. Smidt, H. Arola, C. N. Van Dijk, R. Buchbinder, and W. J. J. Assendelft, “Orthotic devices for tennis elbow: a systematic review,” British Journal of General Practice, vol. 51, no. 472, pp. 924–929, 2001.
[15]  M. Faes, N. Van Elk, J. A. De Lint, H. Degens, J. G. M. Kooloos, and M. T. E. Hopman, “A dynamic extensor brace reduces electromyographic activity of wrist extensor muscles in patients with lateral epicondylalgia,” Journal of Orthopaedic and Sports Physical Therapy, vol. 36, no. 3, pp. 170–178, 2006.
[16]  P. A. A. Struijs, G. M. M. J. Kerkhoffs, W. J. J. Assendelft, and C. N. Van Dijk, “Conservative treatment of lateral epicondylitis: brace versus physical therapy or a combination of both—a randomized clinical trial,” American Journal of Sports Medicine, vol. 32, no. 2, pp. 462–469, 2004.
[17]  L. Altan and E. Kanat, “Conservative treatment of lateral epicondylitis: comparison of two different orthotic devices,” Clinical Rheumatology, vol. 27, no. 8, pp. 1015–1019, 2008.
[18]  F. W. Ilfeld and S. M. Field, “Treatment of tennis elbow. Use of a special brace,” Journal of the American Medical Association, vol. 195, no. 2, pp. 67–70, 1966.
[19]  J. L. Wuori, T. J. Overend, J. F. Kramer, and J. MacDermid, “Strength and pain measures associated with lateral bracing,” Archives of Physical Medicine and Rehabilitation, vol. 79, no. 7, pp. 832–837, 1998.
[20]  L. Bisset, A. Paungmali, B. Vicenzino, and E. Beller, “A systematic review and meta-analysis of clinical trials on physical interventions for lateral epicondylalgia,” British Journal of Sports Medicine, vol. 39, no. 7, pp. 411–422, 2005.
[21]  A. S. Bhargava, C. Eapen, and S. P. Kumar, “Grip strength measurements at two different wrist extension positions in chronic lateral epicondylitis-comparison of involved vs. uninvolved side in athletes and non athletes: a case-control study,” Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology, vol. 2, article 22, 2010.
[22]  D. D. Price, P. A. McGrath, A. Rafii, and B. Buckingham, “The validation of visual analogue scales as ratio scale measures for chronic and experimental pain,” Pain, vol. 17, no. 1, pp. 45–56, 1983.
[23]  J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 2nd edition, 1988.
[24]  W. Assendelft, S. Green, R. Buchbinder, P. Struijs, and N. Smidt, “Tennis elbow (lateral epicondylitis),” Clinical Evidence, no. 8, pp. 1290–1300, 2002.
[25]  M. D. Van De Streek, C. P. Van Der Schans, M. H. G. De Greef, and K. Postema, “The effect of a forearm/hand splint compared with an elbow band as a treatment for lateral epicondylitis,” Prosthetics and Orthotics International, vol. 28, no. 2, pp. 183–189, 2004.
[26]  N. Rosenberg, M. Soudry, and S. Stahl, “Comparison of two methods for the evaluation of treatment in medial epicondylitis: pain estimation vs grip strength measurements,” Archives of Orthopaedic and Trauma Surgery, vol. 124, no. 6, pp. 363–365, 2004.
[27]  R. P. Nirschl, “Prevention and treatment of elbow and shoulder injuries in the tennis player,” Clinics in Sports Medicine, vol. 7, no. 2, pp. 289–308, 1988.
[28]  ?. ?ken, Y. Kahraman, F. Ayhan, S. Canpolat, Z. R. Yorgancioglu, and ?. F. ?ken, “The short-term efficacy of laser, brace, and ultrasound treatment in lateral epicondylitis: a prospective, randomized, controlled trial,” Journal of Hand Therapy, vol. 21, no. 1, pp. 63–68, 2008.
[29]  Y.-C. Lin, Y.-K. Tu, S.-S. Chen, I.-L. Lin, S.-C. Chen, and H.-R. Guo, “Comparison between botulinum toxin and corticosteroid injection in the treatment of acute and subacute tennis elbow: a prospective, randomized, double-blind, active drug-controlled pilot study,” American Journal of Physical Medicine and Rehabilitation, vol. 89, no. 8, pp. 653–659, 2010.
[30]  G. Y. F. Ng and H. L. Chan, “The immediate effects of tension of counterforce forearm brace on neuromuscular performance of wrist extensor muscles in subjects with lateral humeral epicondylosis,” Journal of Orthopaedic and Sports Physical Therapy, vol. 34, no. 2, pp. 72–78, 2004.
[31]  W. Caroline, S. Jansen, S. L. Olson, and S. M. Hasson, “The effect of use of a wrist orthosis during functional activities on surface electromyography of the wrist extensors in normal subjects,” Journal of Hand Therapy, vol. 10, no. 4, pp. 283–289, 1997.
[32]  R. Garg, G. J. Adamson, P. A. Dawson, J. A. Shankwiler, and M. M. Pink, “A prospective randomized study comparing a forearm strap brace versus a wrist splint for the treatment of lateral epicondylitis,” Journal of Shoulder and Elbow Surgery, vol. 19, no. 4, pp. 508–512, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133