“Frataxin fracas” were the words used when referring to the frataxin-encoding gene (FXN) burst in as a motive to disqualify an alternative candidate gene, PIP5K1B, as an actor in Friedreich's ataxia (FRDA) (Campuzano et al., 1996; Cossee et al., 1997; Carvajal et al., 1996). The instrumental role in the disease of large triplet expansions in the first intron of FXN has been thereafter fully confirmed, and this no longer suffers any dispute (Koeppen, 2011). On the other hand, a recent study suggests that the consequences of these large expansions in FXN are wider than previously thought and that the expression of surrounding genes, including PIP5K1B, could be concurrently modulated by these large expansions (Bayot et al., 2013). This recent observation raises a number of important and yet unanswered questions for scientists and clinicians working on FRDA; these questions are the substratum of this paper. 1. Friedreich’s Ataxia With an estimated prevalence of 1?:?50,000 and a carrier frequency of about 1?:?60 to 1?:?90, Friedreich’s ataxia (FRDA) is the most commonly inherited ataxia in the Caucasian population [1, 2]. It is a multisystemic, degenerative disease typically associated with dysarthria, muscle weakness, spasticity in the lower limbs, scoliosis, bladder dysfunction, absent lower limb reflexes, loss of position and vibration sense, and speech and listening difficulties [3]. A majority of the affected individuals have hypertrophic cardiomyopathy. Glucose intolerance and diabetes mellitus are observed in a subset (about 30%) of cases. The onset of symptoms is usually between 10 and 15 years of age, but either much earlier or later onset has been infrequently observed. Initial symptoms can be purely neurological, but occasionally, cardiomyopathy can be the presenting symptom. Altogether, atypical presentations represent as much as 25% of the cases [4]. 2. The Molecular Mechanism In more than 98% of the cases, the disease originates from large homozygous GAA repeat expansions (66 to 1700 repeats; normal: 5 to 33, with 85% less than 12) in the first intron of FXN encoding a mitochondrial matrix targeted protein, frataxin. In between uninterrupted expansions, 34 to 66 represent premutation, or borderline alleles, at risk for intergenerational expansion. The few residual cases represent compound heterozygous for an expanded allele and a point mutation, most frequently a null mutation [5]. 3. Frataxin Depletion: Iron-Sulfur Cluster Deficiency Simultaneously to the discovery of the molecular basis of FRDA by the European consortium combining the teams
References
[1]
A. E. Harding, “Friedreich's ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features,” Brain, vol. 104, no. 3, pp. 589–620, 1981.
[2]
A. H. Koeppen, “Friedreich's ataxia: pathology, pathogenesis, and molecular genetics,” Journal of the Neurological Sciences, vol. 303, no. 1-2, pp. 1–12, 2011.
[3]
A. Dürr, M. Cossee, Y. Agid et al., “Clinical and genetic abnormalities in patients with Friedreich's ataxia,” The New England Journal of Medicine, vol. 335, no. 16, pp. 1169–1175, 1996.
[4]
S. I. Bidichandani and M. B. Delatycki, “Friedreich ataxia,” in GeneReviews, R. A. Pagon, M. P. Adam, T. D. Bird, C. R. Dolan, C. T. Fong, and K. Stephens, Eds., vol. 1993–2012, University of Washington, Seattle, Wash, USA, 1998.
[5]
M. de Castro, J. García-Planells, E. Monrós et al., “Genotype and phenotype analysis of Friedreich's ataxia compound heterozygous patients,” Human Genetics, vol. 106, no. 1, pp. 86–92, 2000.
[6]
V. Campuzano, L. Montermini, M. D. Moltò et al., “Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion,” Science, vol. 271, no. 5254, pp. 1423–1427, 1996.
[7]
M. Cossée, V. Campuzano, H. Koutnikova et al., “Frataxin fracas,” Nature Genetics, vol. 15, no. 4, pp. 337–338, 1997.
[8]
J. J. Carvajal, M. A. Pook, M. dos Santos et al., “The Friedreich's ataxia gene encodes a novel phosphatidylinositol-4-phosphate 5-kinase,” Nature Genetics, vol. 14, no. 2, pp. 157–162, 1996.
[9]
A. R?tig, P. de Lonlay, D. Chretien et al., “Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia,” Nature Genetics, vol. 17, no. 2, pp. 215–217, 1997.
[10]
U. Mühlenhoff, N. Richhardt, M. Ristow, G. Kispal, and R. Lill, “The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins,” Human Molecular Genetics, vol. 11, no. 17, pp. 2025–2036, 2002.
[11]
O. Stehling, H.-P. Els?sser, B. Brückel, U. Mühlenhoff, and R. Lill, “Iron-sulfur protein maturation in human cells: evidence for a function of frataxin,” Human Molecular Genetics, vol. 13, no. 23, pp. 3007–3015, 2004.
[12]
O. Stehling and R. Lill, “The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases,” Cold Spring Harbor Perspectives in Biology, vol. 5, no. 8, 2013.
[13]
A. Bayot, R. Santos, J.-M. Camadro, and P. Rustin, “Friedreich's ataxia: the vicious circle hypothesis revisited,” BMC Medicine, vol. 9, article no. 112, 2011.
[14]
A. Martelli, M. Wattenhofer-Donzé, S. Schmucker, S. Bouvet, L. Reutenauer, and H. Puccio, “Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues,” Human Molecular Genetics, vol. 16, no. 22, pp. 2651–2658, 2007.
[15]
K. Chantrel-Groussard, V. Geromel, H. Puccio et al., “Disabled early recruitment of antioxidant defenses in Friedreich's ataxia,” Human Molecular Genetics, vol. 10, no. 19, pp. 2061–2067, 2001.
[16]
V. Paupe, E. P. Dassa, S. Goncalves et al., “Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia,” PLoS ONE, vol. 4, no. 1, article e4253, 2009.
[17]
A. Pastore, G. Tozzi, L. M. Gaeta et al., “Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia: a potential role in the pathogenesis of the disease,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 42588–42595, 2003.
[18]
F. He and P. K. Todd, “Epigenetics in nucleotide repeat expansion disorders,” Seminars in Neurology, vol. 31, no. 5, pp. 470–483, 2011.
[19]
A. Bayot, S. Reichman, S. Lebon et al., “Cis-silencing of PIP5K1B evidenced in Friedreich's ataxia patient cells results in cytoskeleton anomalies,” Human Molecular Genetics, vol. 22, pp. 2894–2904, 2013.
[20]
M. Nakamori and C. Thornton, “Epigenetic changes and non-coding expanded repeats,” Neurobiology of Disease, vol. 39, no. 1, pp. 21–27, 2010.
[21]
S. I. Bidichandani, T. Ashizawa, and P. I. Patel, “The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure,” American Journal of Human Genetics, vol. 62, no. 1, pp. 111–121, 1998.
[22]
A. Saveliev, C. Everett, T. Sharpe, Z. Webster, and R. Festenstein, “DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing,” Nature, vol. 422, no. 6934, pp. 909–913, 2003.
[23]
C. Sandi, S. Al-Mahdawi, and M. A. Pook, “Epigenetics in Friedreich's ataxia: challenges and opportunities for therapy,” Genetics Research International, vol. 2013, Article ID 852080, 12 pages, 2013.
[24]
J. M. Gottesfeld, “Small molecules affecting transcription in Friedreich ataxia,” Pharmacology & Therapeutics, vol. 116, no. 2, pp. 236–248, 2007.
[25]
D. Herman, K. Jenssen, R. Burnett, E. Soragni, S. L. Perlman, and J. M. Gottesfeld, “Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia,” Nature Chemical Biology, vol. 2, no. 10, pp. 551–558, 2006.
[26]
M. Rai, E. Soragni, C. J. Chou et al., “Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich's ataxia patients and in a mouse model,” PloS ONE, vol. 5, no. 1, article e8825, 2010.
[27]
M. Rai, E. Soragni, K. Jenssen et al., “HDAC inihibitors correct frataxin deficiency in a Friedreich ataxia mouse model,” PLoS ONE, vol. 3, no. 4, article e1958, 2008.
[28]
C. Sandi, R. M. Pinto, S. Al-Mahdawi et al., “Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model,” Neurobiology of Disease, vol. 42, no. 3, pp. 496–505, 2011.
[29]
E. Kim, M. Napierala, and S. Y. R. Dent, “Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich's ataxia,” Nucleic Acids Research, vol. 39, no. 19, pp. 8366–8377, 2011.
[30]
T. Punga and M. Bühler, “Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation,” EMBO Molecular Medicine, vol. 2, no. 4, pp. 120–129, 2010.
[31]
D. Kumari, R. E. Biacsi, and K. Usdin, “Repeat expansion affects both transcription initiation and elongation in Friedreich ataxia cells,” Journal of Biological Chemistry, vol. 286, no. 6, pp. 4209–4215, 2011.
[32]
I. de Biase, Y. K. Chutake, P. M. Rindler, and S. I. Bidichandani, “Epigenetic silencing in Friedreich ataxia is associated with depletion of CTCF (CCCTC-binding factor) and antisense transcription,” PLoS ONE, vol. 4, no. 11, article e7914, 2009.
[33]
M. Babcock, D. de Silva, R. Oaks et al., “Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin,” Science, vol. 276, no. 5319, pp. 1709–1712, 1997.
[34]
S. Adinolfi, C. Iannuzzi, F. Prischi et al., “Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS,” Nature Structural & Molecular Biology, vol. 16, no. 4, pp. 390–396, 2009.
[35]
A.-L. Bulteau, H. A. O'Neill, M. C. Kennedy, M. Ikeda-Saito, G. Isaya, and L. I. Szweda, “Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity,” Science, vol. 305, no. 5681, pp. 242–245, 2004.
[36]
S. Lefevre, C. Brossas, F. Auchere, N. Boggetto, J. M. Camadro, and R. Santos, “Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells,” Human Molecular Genetics, vol. 21, pp. 4060–4072, 2012.
[37]
R. A. Vaubel and G. Isaya, “Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia,” Molecular and Cellular Neuroscience, vol. 55, pp. 50–61, 2013.
[38]
N. Ajit Bolar, A. V. Vanlander, C. Wilbrecht et al., “Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy,” Human Molecular Genetics, vol. 22, pp. 2590–2602, 2013.
[39]
M. Vidal-Quadras, M. Gelabert-Baldrich, D. Soriano-Castell et al., “Rac1 and calmodulin interactions modulate dynamics of ARF6-dependent endocytosis,” Traffic, vol. 12, no. 12, pp. 1879–1896, 2011.
[40]
H.-J. Peng, K. M. Henkels, M. Mahankali et al., “The dual effect of Rac2 on phospholipase D2 regulation that explains both the onset and termination of chemotaxis,” Molecular and Cellular Biology, vol. 31, no. 11, pp. 2227–2240, 2011.
[41]
A. Ooi and K. A. Furge, “Fumarate hydratase inactivation in renal tumors: HIF1alpha, NRF2, and, “cryptic targets” of transcription factors,” Chinese Journal of Cancer, vol. 31, pp. 413–420, 2012.
[42]
J. Adam, E. Hatipoglu, L. O'Flaherty et al., “Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling,” Cancer Cell, vol. 20, no. 4, pp. 524–537, 2011.
[43]
S. Papaiahgari, A. Yerrapureddy, P. M. Hassoun, J. C. N. Garcia, K. G. Birukov, and S. P. Reddy, “EGFR-activated signaling and actin remodeling regulate cyclic stretch-induced NRF2-ARE activation,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 3, pp. 304–312, 2007.
[44]
S. Jiralerspong, B. Ge, T. J. Hudson, and M. Pandolfo, “Manganese superoxide dismutase induction by iron is impaired in Friedreich ataxia cells,” FEBS Letters, vol. 509, no. 1, pp. 101–105, 2001.
[45]
R. B. Wilson, “Therapeutic developments in Friedreich ataxia,” Journal of Child Neurology, vol. 27, pp. 1212–1216, 2012.
[46]
P. Rustin, A. Munnich, and A. R?tig, “Quinone analogs prevent enzymes targeted in Friedreich ataxia from iron-induced injury in vitro,” BioFactors, vol. 9, no. 2-4, pp. 247–251, 1999.
[47]
T. E. Richardson, A. E. Yu, Y. Wen, S.-H. Yang, and J. W. Simpkins, “Estrogen prevents oxidative damage to the mitochondria in Friedreich's ataxia skin fibroblasts,” PLoS ONE, vol. 7, no. 4, Article ID e34600, 2012.
[48]
G. M. Enns, S. L. Kinsman, S. L. Perlman et al., “Initial experience in the treatment of inherited mitochondrial disease with EPI-743,” Molecular Genetics and Metabolism, vol. 105, no. 1, pp. 91–102, 2012.
[49]
P. Rustin, J.-C. von Kleist-Retzow, K. Chantrel-Groussard, D. Sidi, A. Munnich, and A. R?tig, “Effect of idebenone on cardiomyopathy in Friedreich's ataxia: a preliminary study,” The Lancet, vol. 354, no. 9177, pp. 477–479, 1999.
[50]
P. Rustin, “The use of antioxidants in Friedreich's ataxia treatment,” Expert Opinion on Investigational Drugs, vol. 12, no. 4, pp. 569–575, 2003.
[51]
P. Rustin, D. Bonnet, A. Rotig, A. Munnich, and D. Sidi, “Idebenone restores mitochondrial respatory chain enzyme activities in the cardiac muscle in Friedreich's ataxia,” Neurology, vol. 62, pp. 524–525, 2004.
[52]
M. L. Jauslin, T. Wirth, T. Meier, and F. Schoumacher, “A cellular model for Friedreich ataxia revelas small-molecule glutathione peroxidase mimetics as novel treatment strategy,” Human Molecular Genetics, vol. 11, no. 24, pp. 3055–3063, 2002.
[53]
T. E. Richardson, S.-H. Yang, Y. Wen, and J. W. Simpkins, “Estrogen protection in Friedreich's ataxia skin fibroblasts,” Endocrinology, vol. 152, no. 7, pp. 2742–2749, 2011.
[54]
D. Marmolino, F. Acquaviva, M. Pinelli et al., “PPAR-γ agonist azelaoyl PAF increases frataxin protein and mRNA expression: new implications for the Friedreich's ataxia therapy,” Cerebellum, vol. 8, no. 2, pp. 98–103, 2009.
[55]
D. C. Wallace, “A mitochondrial bioenergetic etiology of disease,” The Journal of Clinical Investigation, vol. 123, pp. 1405–1412, 2013.