In this paper, we concluded that transient acidosis reperfusion conferred cardioprotection against myocardial ischemia reperfusion injury in isolated rat hearts through activating PI3K-Akt-eNOS pathway. 1. Introduction During myocardial ischemia, tissue pH significantly declines and returns to normal after reperfusion [1]. Recently, studies reported that acidosis (pH < or = 7.0) protected profoundly against cell death during ischemia. However, the quick return from acidotic to normal pH after reperfusion may cause myocytes to lose viability. This worsening of postischemic injury is a “pH paradox” mediated by sudden or quick changes of intracellular pH (pHi) [2]. Normalization of pH after reperfusion initiates reactive oxygen species (ROS) formation and onset of the mitochondrial permeability transition pore (MPTP), which finally leads to cell death in cardiomyocytes, while acidosis can prevent mitochondrial permeability transition pore (MPTP) opening [3]. Therefore, prolongation of transient acidosis during early reperfusion may prevent the myocardium ischemia reperfusion injury. Ischemic postconditioning, a novel strategy of cardioprotection consisting of the application of brief cycles of ischemia-reflow at the onset of reperfusion, represents a promising approach to protect the myocardium against ischemia and reperfusion injury [4, 5]. And this protection has been related to the activation of phosphatidylinositol 3-kinase-Akt dependent cytoprotective signaling pathway which is part of the reperfusion injury salvage kinase (RISK) that confers cardioprotection when activated at reperfusion [6, 7]. Additionally, Cohen et al. reported that ischemia postconditioning inhibits reoxygenated myocardium to produce reactive oxygen species and prevents MPTP formation by maintaining acidosis during the first 3 minutes of reperfusion [8]. Therefore, we hypothesized that direct acidotic infusion at the onset of reperfusion (acidosis postconditioning) could mimic ischemic postconditioning and induce the delayed recovery of pH and protect myocardium against ischemia reperfusion injury, and this protective effect may be mediated by PI3k-eNOS signaling pathway. 2. Methods The experimental procedures conformed to the Guide for the Care and Use of Laboratory Animals published by National Institute of Health of the People’s Republic of China and approved by the Institutional Animal Ethics Committee. 2.1. Isolated Perfused Rat Heart Preparation Male Sprague-Dawley rats (450–550?g) were heparinised and then anaesthetized with urethan (700?mg/kg). The hearts were rapidly
References
[1]
M. V. Cohen and J. M. Downey, “Ischemic postconditioning: from receptor to end-effector,” Antioxidants and Redox Signaling, vol. 14, no. 5, pp. 821–831, 2011.
[2]
J. J. Lemasters, J. M. Bond, E. Chacon et al., “The pH paradox in ischemia-reperfusion injury to cardiac myocytes,” EXS, vol. 76, pp. 99–114, 1996.
[3]
M. V. Cohen, X.-M. Yang, and J. M. Downey, “Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning's success,” Basic Research in Cardiology, vol. 103, no. 5, pp. 464–471, 2008.
[4]
Z. Q. Zhao, J. S. Corvera, M. E. Halkos, et al., “Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparision with ischemic preconditioning,” The American Journal of Physiology, vol. 285, pp. H579–H588, 2003.
[5]
C. M. Zhao, X. J. Yang, J. H. Yang et al., “Effect of ischaemic postconditioning on recovery of left ventricular contractile function after acute myocardial infarction,” Journal of International Medical Research, vol. 40, no. 3, pp. 1082–1088, 2012.
[6]
Q. L. Wu, T. Shen, H. Ma, and J. K. Wang, “Sufentanil postconditioning protects the myocardium from ischemia-reperfusion via PI3K/Akt-GSK-3beta pathway,” Journal of Surgical Research, vol. 178, no. 2, pp. 563–570, 2012.
[7]
M. Zhu, J. Feng, E. Lucchinetti et al., “Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway,” Cardiovascular Research, vol. 72, no. 1, pp. 152–162, 2006.
[8]
M. V. Cohen, X.-M. Yang, and J. M. Downey, “The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis,” Circulation, vol. 115, no. 14, pp. 1895–1903, 2007.
[9]
T. Wang, X. Mao, H. Li et al., “N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes,” Free Radical Biology and Medicine, vol. 63, pp. 291–303, 2013.
[10]
D. Hodyc, E. Johnson, A. Skoumalová et al., “.Reactive oxygen species production in the early and later stage of chronic ventilatory hypoxia,” Physiological Research, vol. 61, no. 2, pp. 145–151, 2012.
[11]
J. Xu, S. Lei, Y. Liu et al., “Antioxidant N-acetylcysteine attenuates the reduction of brg1 protein expression in the myocardium of type 1 diabetic rats,” Journal of Diabetes Research, vol. 2013, Article ID 716219, 8 pages, 2013.
[12]
J. I. Vandenberg, J. C. Metcalfe, and A. A. Grace, “Mechanisms of pH(i) recovery after global ischemia in the perfused heart,” Circulation Research, vol. 72, no. 5, pp. 993–1003, 1993.
[13]
I. Javier, B. Ignasi, H. Victor, et al., “Effect of acidic reperfusion on prolongation of intracellular acidosis and myocardial salvage,” Cardiovascular Research, vol. 77, pp. 782–790, 2008.
[14]
M. Fujita, H. Asanuma, A. Hirata et al., “Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning,” The American Journal of Physiology, vol. 292, no. 4, pp. H2004–H2008, 2007.
[15]
B. Ebner, S. A. Lange, T. Eckert et al., “Uncoupled eNOS annihilates neuregulin-1beta-induced cardioprotection: a novel mechanism in pharmacological postconditioning in myocardial infarction,” Molecular and Cellular Biochemistry, vol. 373, no. 1-2, pp. 115–123, 2013.
[16]
S. Sumi, H. Kobayashi, S. Yasuda et al., “Postconditioning effect of granulocyte colony-stimulating factor is mediated through activation of risk pathway and opening of the mitochondrial KATP channels,” The American Journal of Physiology, vol. 299, no. 4, pp. H1174–H1182, 2010.
[17]
A. Tsang, D. J. Hausenloy, M. M. Mocanu, and D. M. Yellon, “Postconditioning: a form of “modified reperfusion“ protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway,” Circulation Research, vol. 95, no. 3, pp. 230–232, 2004.
[18]
G. J. Gross, A. Hsu, A. W. Pfeiffer, and K. Nithipatikom, “Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts,” Journal of Molecular and Cellular Cardiology, vol. 59, pp. 20–29, 2013.
[19]
H. Ohtani, H. Katoh, T. Tanaka et al., “Effects of nitric oxide on mitochondrial permeability transition pore and thiol-mediated responses in cardiac myocytes,” Nitric Oxide, vol. 26, no. 2, pp. 95–101, 2012.
[20]
X.-M. Yang, J. B. Proctor, L. Cui, T. Krieg, J. M. Downey, and M. V. Cohen, “Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways,” Journal of the American College of Cardiology, vol. 44, no. 5, pp. 1103–1110, 2004.
[21]
P. Pasdois, C. L. Quinlan, A. Rissa et al., “Ouabain protects rat hearts against ischemia-reperfusion injury via pathway involving src kinase, mitoKATP, and ROS,” The American Journal of Physiology, vol. 292, no. 3, pp. H1470–H1478, 2007.
[22]
G. Zhang, Y. S. Master, Y. Wang et al., “Local administration of lactic acid and a low-dose of the free radical scavenger, edaravone, alleviates myocardial reperfusion injury in rats,” Journal of Cardiovascular Pharmacology, 2013.