Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats
Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30?μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15?μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24?h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death. 1. Introduction The use of natural products has been a general approach for regulating antioxidant homeostasis in cells. Curcumin is a yellow polyphenol compound found in turmeric, derived from Curcuma longa Linn. [1]. Curcumin has shown to be an effective anticarcinogenic, antiviral, antioxidant [2–5], and anti-inflammatory substance in human, cell cultures and animal models [6, 7]. Curcumin acts as a direct and an indirect antioxidant since it scavenges reactive oxygen and nitrogen species [8, 9] and induces cytoprotective enzymes such as glutathione-S-transferase (GST), γ-glutamyl cysteine ligase (γ-GCL), heme oxygenase-1 (HO-1), among others [10, 11]. Curcumin is able to scavenge hydrogen peroxide, peroxyl radicals, superoxide anion, hydroxyl radicals, singlet oxygen, nitric oxide, and peroxynitrite anion [8]. It has been shown that curcumin induces endogenous antioxidant defense mechanisms by modulating transcription factors such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2) [4], activator protein-1 (AP-1), and nuclear
References
[1]
T. Esatbeyoglu, P. Huebbe, I. M. Ernst, et al., “Curcumin—from molecule to biological function,” Angewandte Chemie—International Edition, vol. 51, no. 22, pp. 5308–5332.
[2]
F. Correa, M. Buelna-Chontal, S. Hernandez-Resendiz, et al., “Curcumin maintains cardiac and mitochondrial function in chronic kidney disease,” Free Radical Biology and Medicine C, vol. 61, pp. 119–129, 2013.
[3]
A. González-Salazar, E. Molina-Jijón, F. Correa et al., “Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction,” Cardiovascular Toxicology, vol. 11, no. 4, pp. 357–364, 2011.
[4]
E. Tapia, V. Soto, K. M. Ortiz-Vega, et al., “Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 269039, 14 pages, 2012.
[5]
E. Tapia, Z. L. Zatarain-Barron, R. Hernandez-Pando, et al., “Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats,” Phytomedicine, vol. 20, no. 3-4, pp. 359–366, 2013.
[6]
J. Epstein, I. R. Sanderson, and T. T. MacDonald, “Curcumin as a therapeutic agent: the evidence from in vitro, animal and human studies,” British Journal of Nutrition, vol. 103, no. 11, pp. 1545–1557, 2010.
[7]
B. Sung, S. Prasad, V. R. Yadav, et al., “Cancer cell signaling pathways targeted by spice-derived nutraceuticals,” Nutrition and Cancer, vol. 64, no. 2, pp. 173–197, 2012.
[8]
J. Trujillo, Y. I. Chirino, E. Molina-Jijon, et al., “Renoprotective effect of the antioxidant curcumin: recent findings,” Redox Biology, vol. 1, no. 1, p. 9, 2013.
[9]
A. Barzegar and A. A. Moosavi-Movahedi, “Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin,” PLoS ONE, vol. 6, no. 10, Article ID e26012, 2011.
[10]
A. T. Dinkova-Kostova and P. Talalay, “Direct and indirect antioxidant properties of inducers of cytoprotective proteins,” Molecular Nutrition and Food Research, vol. 52, supplement 1, pp. S128–S138, 2008.
[11]
L. M. Reyes-Fermin, S. Gonzalez-Reyes, N. G. Tarco-Alvarez, et al., “Neuroprotective effect of alpha-mangostin and curcumin against iodoacetate-induced cell death,” Nutritional Neuroscience, vol. 15, no. 5, pp. 34–41, 2012.
[12]
R. Pinkus, L. M. Weiner, and V. Daniel, “Role of oxidants and antioxidants in the induction of AP-1, NF-κB, and glutathione S-transferase gene expression,” Journal of Biological Chemistry, vol. 271, no. 23, pp. 13422–13429, 1996.
[13]
A. C. Anderica-Romero, I. G. Gonzalez-Herrera, A. Santamaria, et al., “Cullin 3 as a novel target in diverse pathologies,” Redox Biology, vol. 1, no. 1, pp. 366–372, 2013.
[14]
K. T. Turpaev, “Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles,” Biochemistry, vol. 78, no. 2, pp. 111–126, 2013.
[15]
H. K. Bryan, A. Olayanju, C. E. Goldring, et al., “The Nrf2 cell defence pathway: Keap1-dependent and-independent mechanisms of regulation,” Biochemical Pharmacology, vol. 85, no. 6, pp. 705–717, 2013.
[16]
S. C. Gupta, S. Prasad, J. H. Kim et al., “Multitargeting by curcumin as revealed by molecular interaction studies,” Natural Product Reports, vol. 28, no. 12, pp. 1937–1955, 2011.
[17]
A. A. Canales-Aguirre, U. A. Gomez-Pinedo, S. Luquin, M. A. Ramírez-Herrera, M. L. Mendoza-Maga?a, and A. Feria-Velasco, “Curcumin protects against the oxidative damage induced by the pesticide parathion in the hippocampus of the rat brain,” Nutritional Neuroscience, vol. 15, no. 2, pp. 62–69, 2012.
[18]
G. Scapagnini, C. Colombrita, M. Amadio et al., “Curcumin activates defensive genes and protects neurons against oxidative stress,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 395–403, 2006.
[19]
R. F. Regan, Y. Wang, X. Ma, A. Chong, and Y. Guo, “Activation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte cultures,” Journal of Neurochemistry, vol. 79, no. 3, pp. 545–555, 2001.
[20]
S. R. Robinson, T. N. Dang, R. Dringen, and G. M. Bishop, “Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke,” Redox Report, vol. 14, no. 6, pp. 228–235, 2009.
[21]
B. Harwell, “Biochemistry of oxidative stress,” Biochemical Society Transactions, vol. 35, part 5, pp. 1147–1150, 2007.
[22]
M. D. Laird, C. Wakade, C. H. Alleyne Jr., and K. M. Dhandapani, “Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes,” Free Radical Biology and Medicine, vol. 45, no. 8, pp. 1103–1114, 2008.
[23]
T. N. Dang, G. M. Bishop, R. Dringen, and S. R. Robinson, “The metabolism and toxicity of hemin in astrocytes,” Glia, vol. 59, no. 10, pp. 1540–1550, 2011.
[24]
T. N. Dang, S. R. Robinson, R. Dringen, and G. M. Bishop, “Uptake, metabolism and toxicity of hemin in cultured neurons,” Neurochemistry International, vol. 58, no. 7, pp. 804–811, 2011.
[25]
M. C. Dai, Z. H. Zhong, Y. H. Sun, et al., “Curcumin protects against iron induced neurotoxicity in primary cortical neurons by attenuating necroptosis,” Neuroscience Letters, vol. 536, pp. 41–46, 2013.
[26]
D. Demirovic and S. I. S. Rattan, “Curcumin induces stress response and hormetically modulates wound healing ability of human skin fibroblasts undergoing ageing in vitro,” Biogerontology, vol. 12, no. 5, pp. 437–444, 2011.
[27]
C. F. Lima, C. Pereira-Wilson, and S. I. S. Rattan, “Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: relevance for anti-aging intervention,” Molecular Nutrition and Food Research, vol. 55, no. 3, pp. 430–442, 2011.
[28]
E. Molina-Jijón, E. Tapia, C. Zazueta et al., “Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway,” Free Radical Biology and Medicine, vol. 51, no. 8, pp. 1543–1557, 2011.
[29]
S. González-Reyes, M. Orozco-Ibarra, S. Guzmán-Beltrán, E. Molina-Jijón, L. Massieu, and J. Pedraza-Chaverri, “Neuroprotective role of heme-oxygenase 1 againts iodoacetate-induced toxicity in rat cerebellar granule neurons: role of bilirubin,” Free Radical Research, vol. 43, no. 3, pp. 214–223, 2009.
[30]
S. Guzmán-Beltrán, S. Espada, M. Orozco-Ibarra, J. Pedraza-Chaverri, and A. Cuadrado, “Nordihydroguaiaretic acid activates the antioxidant pathway Nrf2/HO-1 and protects cerebellar granule neurons against oxidative stress,” Neuroscience Letters, vol. 447, no. 2-3, pp. 167–171, 2008.
[31]
M. Orozco-Ibarra, A. M. Estrada-Sánchez, L. Massieu, and J. Pedraza-Chaverrí, “Heme oxygenase-1 induction prevents neuronal damage triggered during mitochondrial inhibition: role of CO and bilirubin,” International Journal of Biochemistry and Cell Biology, vol. 41, no. 6, pp. 1304–1314, 2009.
[32]
J. Pedraza-Chaverrí, L. M. Reyes-Fermín, E. G. Nolasco-Amaya et al., “ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons,” Experimental and Toxicologic Pathology, vol. 61, no. 5, pp. 491–501, 2009.
[33]
V. P. Bindokas and A. T. Ishida, “Conotoxin-sensitive and conotoxin-resistant Ca2+ currents in fish retinal ganglion cells,” Journal of Neurobiology, vol. 29, no. 4, pp. 429–444, 1996.
[34]
I. Rahman, A. Kode, and S. K. Biswas, “Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method,” Nature Protocols, vol. 1, no. 6, pp. 3159–3165, 2007.
[35]
J. C. Fernandez-Checa and N. Kaplowitz, “The use of monochlorobimane to determine hepatic GSH levels and synthesis,” Analytical Biochemistry, vol. 190, no. 2, pp. 212–219, 1990.
[36]
C. E. Guerrero-Beltran, M. Calderon-Oliver, E. Tapia, et al., “Sulforaphane protects against cisplatin-induced nephrotoxicity,” Toxicology Letters, vol. 192, no. 3, pp. 278–285, 2010.
[37]
H. Jiang, X. Tian, Y. Guo, W. Duan, H. Bu, and C. Li, “Activation of nuclear factor erythroid 2-related factor 2 cytoprotective signaling by curcumin protect primary spinal cord astrocytes against oxidative toxicity,” Biological and Pharmaceutical Bulletin, vol. 34, no. 8, pp. 1194–1197, 2011.
[38]
M. N. A. Mandal, J. M. R. Patlolla, L. Zheng et al., “Curcumin protects retinal cells from light-and oxidant stress-induced cell death,” Free Radical Biology and Medicine, vol. 46, no. 5, pp. 672–679, 2009.
[39]
A. Yadav, V. Lomash, M. Samim, et al., “Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity,” Chemico-Biological Interactions, vol. 199, no. 1, pp. 49–61, 2012.
[40]
N. Kelsey, W. Hulick, A. Winter, E. Ross, and D. Linseman, “Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress,” Nutritional Neuroscience, vol. 14, no. 6, pp. 249–259, 2011.
[41]
R. B. Mythri and M. M. Srinivas Bharath, “Curcumin: a potential neuroprotective agent in Parkinson's disease,” Current Pharmaceutical Design, vol. 18, no. 1, pp. 91–99, 2012.
[42]
D. Yanagisawa, T. Amatsubo, S. Morikawa et al., “In vivo detection of amyloid β deposition using19F magnetic resonance imaging with a19F-containing curcumin derivative in a mouse model of Alzheimer's disease,” Neuroscience, vol. 184, pp. 120–127, 2011.
[43]
M. P. Mattson, “Hormesis defined,” Ageing Research Reviews, vol. 7, no. 1, pp. 1–7, 2008.
[44]
R. F. Regan, J. Chen, and L. Benvenisti-Zarom, “Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin,” BMC Neuroscience, vol. 5, article 34, 2004.
[45]
E. Balogun, M. Hoque, P. Gong et al., “Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element,” Biochemical Journal, vol. 371, part 3, pp. 887–895, 2003.
[46]
H. Parfenova, C. W. Leffler, S. Basuroy, J. Liu, and A. L. Fedinec, “Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 6, pp. 1024–1034, 2012.
[47]
K. Aoyama, M. Watabe, and T. Nakaki, “Regulation of neuronal glutathione synthesis,” Journal of Pharmacological Sciences, vol. 108, no. 3, pp. 227–238, 2008.
[48]
C. Mytilineou, B. C. Kramer, and J. A. Yabut, “Glutathione depletion and oxidative stress,” Parkinsonism and Related Disorders, vol. 8, no. 6, pp. 385–387, 2002.
[49]
M. B. Spina, S. P. Squinto, J. Miller, R. M. Lindsay, and C. Hyman, “Brain-derived neurotrophic factor protects dopamine neurons against 6- hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system,” Journal of Neurochemistry, vol. 59, no. 1, pp. 99–106, 1992.
[50]
A. H. Stokes, D. Y. Lewis, L. H. Lash et al., “Dopamine toxicity in neuroblastoma cells: role of glutathione depletion byL-BSO and apoptosis,” Brain Research, vol. 858, no. 1, pp. 1–8, 2000.
[51]
V. E. Sahini, M. Dumitrescu, E. Volanschi, L. Birla, and C. Diaconu, “Spectral and interferometrical study of the interaction of haemin with glutathione,” Biophysical Chemistry, vol. 58, no. 3, pp. 245–253, 1996.
[52]
T. Nguyen, P. Nioi, and C. B. Pickett, “The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13291–13295, 2009.
[53]
I. Carmona-Ramirez, A. Santamaria, J. C. Tobon-Velasco, et al., “Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity,” The Journal of Nutritional Biochemistry, vol. 24, no. 1, pp. 14–24, 2013.
[54]
C. Yang, X. Zhang, H. Fan, and Y. Liu, “Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia,” Brain Research, vol. 1282, pp. 133–141, 2009.
[55]
F. Arredondo, C. Echeverry, J. A. Abin-Carriquiry et al., “After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult,” Free Radical Biology and Medicine, vol. 49, no. 5, pp. 738–747, 2010.
[56]
R. Dringen, L. Kussmaul, J. M. Gutterer, J. Hirrlinger, and B. Hamprecht, “The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells,” Journal of Neurochemistry, vol. 72, no. 6, pp. 2523–2530, 1999.
[57]
M. J. McGirt, A. Parra, H. Sheng et al., “Attenuation of cerebral vasospasm after subarachnoid hemorrhage in mice overexpressing extracellular superoxide dismutase,” Stroke, vol. 33, no. 9, pp. 2317–2323, 2002.
[58]
A. Saito, H. Kamii, I. Kato et al., “Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage,” Stroke, vol. 32, no. 7, pp. 1652–1656, 2001.