Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. 1. Nucleic Acid Oxidation as a Marker of Oxidative Insult by Reactive Oxygen Species and the Driving Force in Cancer Progression The integrity of the genome is of crucial importance for proper gene expression and DNA replication. Loss of genome integrity jeopardizes normal cellular physiological activities and leads to cellular pathological events such as senescence, apoptosis, and tumorigenesis [1]. Under oxidative stress, the level of genotoxic reactive oxygen species (ROS) is abnormally elevated. ROS interact with and modify the chemical properties of biomolecules inside the cell, which causes oxidative insults such as oxidation of nucleic acids, peroxidation of lipids [2], and denaturation of proteins [3]. Oxidative modification to DNA structure mainly occurs in the form of base oxidation. Guanine, which possesses the lowest oxidation potential of the DNA bases, is the most frequent target of ROS. ROS-elicited changes in biomolecules can be used as biomarkers to indicate the presence and extent of oxidative insult. 8-Oxo-7,8-dihydroguanine (8-oxoG), the oxidation product of the DNA base guanine is a well-characterized marker
References
[1]
S. Wolters and B. Schumacher, “Genome maintenance and transcription integrity in aging and disease,” Frontiers in Genetics, vol. 4, article 19, 2013.
[2]
H. Yin, L. Xu, and N. A. Porter, “Free radical lipid peroxidation: mechanisms and analysis,” Chemical Reviews, vol. 111, no. 10, pp. 5944–5972, 2011.
[3]
S. Grimm, A. H?hn, and T. Grune, “Oxidative protein damage and the proteasome,” Amino Acids, vol. 42, no. 1, pp. 23–38, 2012.
[4]
M. Dizdaroglu, P. Jaruga, M. Birincioglu, and H. Rodriguez, “Free radical-induced damage to DNA: mechanisms and measurement,” Free Radical Biology and Medicine, vol. 32, no. 11, pp. 1102–1115, 2002.
[5]
S. Maynard, S. H. Schurman, C. Harboe, N. C. de Souza-Pinto, and V. A. Bohr, “Base excision repair of oxidative DNA damage and association with cancer and aging,” Carcinogenesis, vol. 30, no. 1, pp. 2–10, 2009.
[6]
M. Shaheen, I. Shanmugam, and R. Hromas, “The role of PCNA posttranslational modifications in translesion synthesis,” Journal of Nucleic Acids, vol. 2010, Article ID 761217, 8 pages, 2010.
[7]
S. Jones, W.-D. Chen, G. Parmigiani et al., “Comparative lesion sequencing provides insights into tumor evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4283–4288, 2008.
[8]
A. Valavanidis, T. Vlachogianni, and C. Fiotakis, “8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis,” Journal of Environmental Science and Health: Part C, vol. 27, no. 2, pp. 120–139, 2009.
[9]
S. Lagadu, M. Lechevrel, F. Sichel et al., “8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker of oxidative damage in oesophageal cancer patients: lack of association with antioxidant vitamins and polymorphism of hOGG1 and GST,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 157, pp. 1756–9966, 2010.
[10]
H. Bartsch and J. Nair, “Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis,” Cancer Detection and Prevention, vol. 28, no. 6, pp. 385–391, 2004.
[11]
M. Wang, K. Dhingra, W. N. Hittelman, J. G. Liehr, M. De Andrade, and D. Li, “Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues,” Cancer Epidemiology Biomarkers and Prevention, vol. 5, no. 9, pp. 705–710, 1996.
[12]
S. Kaur, P. Greaves, D. N. Cooke et al., “Breast cancer prevention by green tea catechins and black tea theaflavins in the C3(1) SV40 T,t antigen transgenic mouse model is accompanied by increased apoptosis and a decrease in oxidative DNA adducts,” Journal of Agricultural and Food Chemistry, vol. 55, no. 9, pp. 3378–3385, 2007.
[13]
A. Machowetz, H. E. Poulsen, S. Gruendel et al., “Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans,” The FASEB Journal, vol. 21, no. 1, pp. 45–52, 2007.
[14]
E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, “Oxidative stress and antioxidant defense,” World Allergy Organization Journal, vol. 5, no. 1, pp. 9–19, 2012.
[15]
Y.-J. Surh, “Cancer chemoprevention with dietary phytochemicals,” Nature Reviews Cancer, vol. 3, no. 10, pp. 768–780, 2003.
[16]
V. D. Antonenkov, S. Grunau, S. Ohlmeier, and J. K. Hiltunen, “Peroxisomes are oxidative organelles,” Antioxidants and Redox Signaling, vol. 13, no. 4, pp. 525–537, 2010.
[17]
X. Sun, M. Ai, Y. Wang et al., “Selective induction of tumor cell apoptosis by a novel P450-mediated reactive oxygen species (ROS) inducer methyl 3-(4-nitrophenyl) propiolate,” Journal of Biological Chemistry, vol. 288, pp. 8826–8837, 2013.
[18]
A. Zanotto-Filho, R. Schroder, and J. C. F. Moreira, “Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells,” Free Radical Research, vol. 42, no. 6, pp. 593–601, 2008.
[19]
G. Taibi, G. Carruba, V. Miceli, L. Cocciadiferro, A. Cucchiara, and C. M. A. Nicotra, “Sildenafil protects epithelial cell through the inhibition of xanthine oxidase and the impairment of ROS production,” Free Radical Research, vol. 44, no. 2, pp. 232–239, 2010.
[20]
S. M. Beak, Y. S. Lee, and J.-A. Kim, “NADPH oxidase and cyclooxygenase mediate the ultraviolet B-induced generation of reactive oxygen species and activation of nuclear factor-κB in HaCaT human keratinocytes,” Biochimie, vol. 86, no. 7, pp. 425–429, 2004.
[21]
C. Matthias, M. T. Schuster, S. Zieger, and U. Harreus, “COX-2 inhibitors celecoxib and rofecoxib prevent oxidative DNA fragmentation,” Anticancer Research, vol. 26, no. 3A, pp. 2003–2007, 2006.
[22]
M. Los, H. Schenk, K. Hexel, P. A. Baeuerle, W. Droge, and K. Schulze-Osthoff, “IL-2 gene expression and NF-κ B activation through CD28 requires reactive oxygen production by 5-lipoxygenase,” EMBO Journal, vol. 14, no. 15, pp. 3731–3740, 1995.
[23]
M. Edderkaoui, P. Hong, E. C. Vaquero et al., “Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase,” American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 289, no. 6, pp. G1137–G1147, 2005.
[24]
M. J. Grimm, R. R. Vethanayagam, N. G. Almyroudis et al., “Monocyte- and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice,” Journal of Immunology, vol. 190, no. 8, pp. 4175–4184, 2013.
[25]
N. G. Almyroudis, M. J. Grimm, B. A. Davidson, M. R?hm, C. F. Urban, and B. H. Segal, “NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury,” Frontiers in Immunology, vol. 4, article 45, 2013.
[26]
C. Nussbaum, A. Klinke, M. Adam, S. Baldus, and M. Sperandio, “Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease,” Antioxidants and Redox Signaling, vol. 18, no. 6, pp. 692–713, 2013.
[27]
A.-K. Tidén, T. Sj?gren, M. Svensson et al., “2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation,” Journal of Biological Chemistry, vol. 286, no. 43, pp. 37578–37589, 2011.
[28]
G. Trinchieri, “Cancer and inflammation: an old intuition with rapidly evolving new concepts,” Annual Review of Immunology, vol. 30, pp. 677–706, 2012.
[29]
S. J. Stohs and D. Bagchi, “Oxidative mechanisms in the toxicity of metal ions,” Free Radical Biology and Medicine, vol. 18, no. 2, pp. 321–336, 1995.
[30]
J. C. Lee, Y. O. Son, P. Pratheeshkumar, and X. Shi, “Oxidative stress and metal carcinogenesis,” Free Radical Biology and Medicine, vol. 53, no. 4, pp. 742–757, 2012.
[31]
H. Sies, “Strategies of antioxidant defense,” European Journal of Biochemistry, vol. 215, no. 2, pp. 213–219, 1993.
[32]
P. Arosio and S. Levi, “Ferritin, iron homeostasis, and oxidative damage,” Free Radical Biology and Medicine, vol. 33, no. 4, pp. 457–463, 2002.
[33]
W. S. Wu, Y. S. Zhao, Z. H. Shi et al., “Mitochondrial ferritin attenuates β-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways,” Antioxidants and Redox Signaling, vol. 18, no. 2, pp. 158–169, 2013.
[34]
A. N. Luck and A. B. Mason, “Transferrin-mediated cellular iron delivery,” Current Topics Membranes, vol. 69, pp. 3–35, 2012.
[35]
T. Johannesson, J. Kristinsson, G. Torsdottir, and J. Snaedal, “Ceruloplasmin (Cp) and iron in connection with Parkinson's disease (PD) and Alzheimer's disease (AD),” Laeknabladid, vol. 98, no. 10, pp. 531–537, 2012.
[36]
W. Qu, J. Pi, and M. P. Waalkes, “Metallothionein blocks oxidative DNA damage in vitro,” Archives of Toxicology, vol. 87, no. 2, pp. 311–321, 2013.
[37]
E. Beutler, “Glucose-6-phosphate dehydrogenase deficiency: a historical perspective,” Blood, vol. 111, no. 1, pp. 16–24, 2008.
[38]
M. Kobayashi and M. Yamamoto, “Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation,” Antioxidants and Redox Signaling, vol. 7, no. 3-4, pp. 385–394, 2005.
[39]
S. K. Niture, R. Khatri, and A. K. Jaiswal, “Regulation of Nrf2—an update,” Free Radical Biology and Medicine, 2013.
[40]
T. W. Kensler, N. Wakabayashi, and S. Biswal, “Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 89–116, 2007.
[41]
K. C. Kim, K. A. Kang, R. Zhang et al., “Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 2, pp. 297–305, 2010.
[42]
J. W. Kaspar, S. K. Niture, and A. K. Jaiswal, “Nrf2:INrf2 (Keap1) signaling in oxidative stress,” Free Radical Biology and Medicine, vol. 47, no. 9, pp. 1304–1309, 2009.
[43]
J. Kim, Y.-N. Cha, and Y.-J. Surh, “A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders,” Mutation Research, vol. 690, no. 1-2, pp. 12–23, 2010.
[44]
J. K. Kundu and Y.-J. Surh, “Nrf2-keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis,” Pharmaceutical Research, vol. 27, no. 6, pp. 999–1013, 2010.
[45]
H.-K. Na, E.-H. Kim, J.-H. Jung, H.-H. Lee, J.-W. Hyun, and Y.-J. Surh, “(?)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells,” Archives of Biochemistry and Biophysics, vol. 476, no. 2, pp. 171–177, 2008.
[46]
P. A. Knobel and T. M. Marti, “Translesion DNA synthesis in the context of cancer research,” Cancer Cell International, vol. 11, no. 39, 2011.
[47]
J. E. Sale, “Translesion DNA synthesis and mutagenesis in eukaryotes,” Cold Spring Harbor Perspectives in Biology, vol. 5, no. 3, 2013.
[48]
M. Benderoth, S. Textor, A. J. Windsor, T. Mitchell-Olds, J. Gershenzon, and J. Kroymann, “Positive selection driving diversification in plant secondary metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9118–9123, 2006.
[49]
D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the last 25 years,” Journal of Natural Products, vol. 70, no. 3, pp. 461–477, 2007.
[50]
L. Pan, H. Chai, and A. D. Kinghorn, “The continuing search for antitumor agents from higher plants,” Phytochemistry Letters, vol. 3, no. 1, pp. 1–8, 2010.
[51]
S. Singh, “From exotic spice to modern drug?” Cell, vol. 130, no. 5, pp. 765–768, 2007.
[52]
A. L. Harvey, “Natural products in drug discovery,” Drug Discovery Today, vol. 13, no. 19-20, pp. 894–901, 2008.
[53]
J. W.-H. Li and J. C. Vederas, “Drug discovery and natural products: end of an era or an endless frontier?” Science, vol. 325, no. 5937, pp. 161–165, 2009.
[54]
W.-L. Lee, J.-Y. Shiau, and L.-F. Shyur, “Taxol, camptothecin and beyond for cancer therapy,” Advances in Botanical Research, vol. 62, pp. 133–178, 2012.
[55]
K. M. Hsan, C.-C. Chen, and L.-F. Shyur, “Current research and development of chemotherapeutic agents for melanoma,” Cancers, vol. 2, no. 2, pp. 397–419, 2010.
[56]
J. Antoslewicz, W. Ziolkowski, S. Kar, A. A. Powolny, and S. V. Singh, “Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents,” Planta Medica, vol. 74, no. 13, pp. 1570–1579, 2008.
[57]
A. R. Neves, M. Lucio, J. L. C. Lima, and S. Reis, “Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions,” Current Medicinal Chemistry, vol. 19, no. 11, pp. 1663–1681, 2012.
[58]
H.-Q. Li, Y. Luo, and C.-H. Qiao, “The mechanisms of anticancer agents by genistein and synthetic derivatives of isoflavone,” Mini-Reviews in Medicinal Chemistry, vol. 12, no. 4, pp. 350–362, 2012.
[59]
M. López-Lázaro, “Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent,” Molecular Nutrition and Food Research, vol. 52, supplement 1, pp. S103–S127, 2008.
[60]
J. D. Lambert and R. J. Elias, “The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention,” Archives of Biochemistry and Biophysics, vol. 501, no. 1, pp. 65–72, 2010.
[61]
W.-L. Lee, T.-N. Wen, J.-Y. Shiau, and L.-F. Shyur, “Differential proteomic profiling identifies novel molecular targets of paclitaxel and phytoagent deoxyelephantopin against mammary adenocarcinoma cells,” Journal of Proteome Research, vol. 9, no. 1, pp. 237–253, 2010.
[62]
C.-C. Huang, C.-P. Lo, C.-Y. Chiu, and L.-F. Shyur, “Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice,” British Journal of Pharmacology, vol. 159, no. 4, pp. 856–871, 2010.
[63]
W.-L. Lee and L.-F. Shyur, “Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation,” Free Radical Biology and Medicine, vol. 52, no. 8, pp. 1423–1436, 2012.
[64]
T. Efferth, “Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells,” Current Drug Targets, vol. 7, no. 4, pp. 407–421, 2006.
[65]
S. L. Kim, K. T. Trang, S. H. Kim et al., “Parthenolide suppresses tumor growth in a xenograft model of colorectal cancer cells by inducing mitochondrial dysfunction and apoptosis,” International Journal of Oncology, vol. 41, no. 4, 2012.
[66]
D. Oka, K. Nishimura, M. Shiba et al., “Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-κB,” International Journal of Cancer, vol. 120, no. 12, pp. 2576–2581, 2007.
[67]
C. J. Sweeney, S. Mehrotra, M. R. Sadaria et al., “The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer,” Molecular Cancer Therapeutics, vol. 4, no. 6, pp. 1004–1012, 2005.
[68]
K. W. Lee, A. M. Bode, and Z. Dong, “Molecular targets of phytochemicals for cancer prevention,” Nature Reviews Cancer, vol. 11, no. 3, pp. 211–218, 2011.
[69]
S. A. Mandel, T. Amit, L. Kalfon, L. Reznichenko, O. Weinreb, and M. B. Youdim, “Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG),” Journal of Alzheimer's Disease, vol. 15, no. 2, pp. 211–222, 2008.
[70]
R. C. Hider, Z. D. Liu, and H. H. Khodr, “Metal chelation of polyphenols,” Methods in Enzymology, vol. 335, pp. 190–203, 2001.
[71]
J. D. Hayes, M. McMahon, S. Chowdhry, and A. T. Dinkova-Kostova, “Cancer chemoprevention mechanisms mediated through the keap1-Nrf2 pathway,” Antioxidants and Redox Signaling, vol. 13, no. 11, pp. 1713–1748, 2010.
[72]
C. Gerh?user, K. Klimo, E. Heiss et al., “Mechanism-based in vitro screening of potential cancer chemopreventive agents,” Mutation Research, vol. 523-524, pp. 163–172, 2003.
[73]
S. Papa, C. Bubici, C. G. Pham, F. Zazzeroni, and G. Franzoso, “NF-κB meets ROS: an “iron-ic” encounter,” Cell Death and Differentiation, vol. 12, no. 10, pp. 1259–1262, 2005.
[74]
Z. Meng, C. Yan, Q. Deng, D. F. Gao, and X. L. Niu, “Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways,” Acta Pharmacologica Sinica, vol. 34, no. 7, pp. 901–911, 2013.
[75]
S. Qi, Y. Xin, Y. Guo et al., “Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways,” International Immunopharmacology, vol. 12, no. 1, pp. 278–287, 2012.
[76]
D. Ren, H. Wang, J. Liu, M. Zhang, and W. Zhang, “ROS-induced ZNF580 expression: a key role for H2O2NF-κB signaling pathway in vascular endothelial inflammation,” Molecular and Cellular Biochemistry, vol. 359, no. 1-2, pp. 183–191, 2012.
[77]
C. Yang, Z. Yang, M. Zhang et al., “Hydrogen sulfide protects against chemical hypoxia-induced cytotoxicity and inflammation in hacat cells through inhibition of ROS/NF-κB/COX-2 pathway,” PLoS One, vol. 6, no. 7, Article ID e21971, 2011.
[78]
H. C. Box, H. B. Patrzyc, E. E. Budzinski et al., “Profiling oxidative DNA damage: effects of antioxidants,” Cancer Science, vol. 103, no. 11, pp. 2002–2006, 2012.
[79]
M. S. Farias, P. Budni, C. M. Ribeiro, E. B. Parisotto, C. E. Santos, J. F. Dias, et al., “Antioxidant supplementation attenuates oxidative stress in chronic hepatitis C patients,” Gastroenterología y Hepatología, vol. 35, no. 6, pp. 386–394, 2012.
[80]
N. Singh, P. Bhardwaj, R. M. Pandey, and A. Saraya, “Oxidative stress and antioxidant capacity in patients with chronic pancreatitis with and without diabetes mellitus,” Indian Journal of Gastroenterology, vol. 31, no. 5, pp. 226–231, 2012.
[81]
M. A. Puertollano, E. Puertollano, G. A. De Cienfuegos, and M. A. De Pablo, “Dietary antioxidants: immunity and host defense,” Current Topics in Medicinal Chemistry, vol. 11, no. 14, pp. 1752–1766, 2011.
[82]
M. R. McCall and B. Frei, “Can antioxidant vitamins materially reduce oxidative damage in humans?” Free Radical Biology and Medicine, vol. 26, no. 7-8, pp. 1034–1053, 1999.
[83]
S.-K. Myung, Y. Kim, W. Ju, H. J. Choi, and W. K. Bae, “Effects of antioxidant supplements on cancer prevention: meta-analysis of randomized controlled trials,” Annals of Oncology, vol. 21, no. 1, Article ID mdp286, pp. 166–179, 2010.
[84]
Y. J. Chang, S.-K. Myung, S. T. Chung et al., “Effects of vitamin treatment or supplements with purported antioxidant properties on skin cancer prevention: a meta-analysis of randomized controlled trials,” Dermatology, vol. 223, no. 1, pp. 36–44, 2011.
[85]
T. T. Mosby, M. Cosgrove, S. Sarkardei, K. L. Platt, and B. Kaina, “Nutrition in adult and childhood cancer: role of carcinogens and anti-carcinogens,” Anticancer Research, vol. 32, no. 10, pp. 4171–4192, 2012.
[86]
F. S. Cheung, F. J. Lovicu, and J. K. Reichardt, “Current progress in using vitamin D and its analogs for cancer prevention and treatment,” Expert Review of Anticancer Therapy, vol. 12, no. 6, pp. 811–837, 2012.
[87]
C. F. Garland, C. B. French, L. L. Baggerly, and R. P. Heaney, “Vitamin D supplement doses and serum 25-Hydroxyvitamin D in the range associated with cancer prevention,” Anticancer Research, vol. 31, no. 2, pp. 607–612, 2011.
[88]
J. M. Gaziano, H. D. Sesso, W. G. Christen et al., “Multivitamins in the prevention of cancer in men: the Physicians' Health Study II randomized controlled trial,” The Journal of the American Medical Association, vol. 308, no. 18, pp. 1871–1880, 2012.
[89]
R. J. Sram, P. Farmer, R. Singh et al., “Effect of vitamin levels on biomarkers of exposure and oxidative damage—the EXPAH study,” Mutation Research, vol. 672, no. 2, pp. 129–134, 2009.
[90]
Y. Yan, J.-Y. Yang, Y.-H. Mou, L.-H. Wang, Y.-N. Zhou, and C.-F. Wu, “Differences in the activities of resveratrol and ascorbic acid in protection of ethanol-induced oxidative DNA damage in human peripheral lymphocytes,” Food and Chemical Toxicology, vol. 50, no. 2, pp. 168–174, 2012.
[91]
B. H. Collins, A. Horská, P. M. Hotten, C. Riddoch, and A. R. Collins, “Kiwifruit protects against oxidative DNA damage in human cells and in vitro,” Nutrition and Cancer, vol. 39, no. 1, pp. 148–153, 2001.
[92]
A. Fiorentino, B. D'abrosca, S. Pacifico, C. Mastellone, M. Scognamiglio, and P. Monaco, “Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits,” Journal of Agricultural and Food Chemistry, vol. 57, no. 10, pp. 4148–4155, 2009.
[93]
M. Kapiszewska, E. Soltys, F. Visioli, A. Cierniak, and G. Zajac, “The protective ability of the Mediterranean plant extracts against the oxidative DNA damage. The role of the radical oxygen species and the polyphenol content,” Journal of Physiology and Pharmacology, vol. 56, supplement 1, pp. 183–197, 2005.
[94]
M. Viladomiu, R. Hontecillas, P. Lu, and J. Bassaganya-Riera, “Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 789764, 18 pages, 2013.
[95]
J. Jurenka, “Therapeutic applications of pomegranate (Punica granatum L.): a review,” Alternative Medicine Review, vol. 13, no. 2, pp. 128–144, 2008.
[96]
A. Bishayee, D. Bhatia, R. J. Thoppil, A. S. Darvesh, E. Nevo, and E. P. Lansky, “Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms,” Carcinogenesis, vol. 32, no. 6, pp. 888–896, 2011.
[97]
R. J. Thoppil, D. Bhatia, K. F. Barnes et al., “Black currant anthocyanins abrogate oxidative stress through Nrf2- mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma,” Currant Cancer Drug Targets, vol. 12, no. 9, pp. 1244–1257, 2012.
[98]
D. F. Romagnolo and O. I. Selmin, “Flavonoids and cancer prevention: a review of the evidence,” Journal of Nutrition in Gerontology and Geriatrics, vol. 31, no. 3, pp. 206–238, 2012.
[99]
J. D. Hayes and M. McMahon, “Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention,” Cancer Letters, vol. 174, no. 2, pp. 103–113, 2001.
[100]
H.-K. Na and Y.-J. Surh, “Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG,” Food and Chemical Toxicology, vol. 46, no. 4, pp. 1271–1278, 2008.
[101]
Y.-J. Surh, J. K. Kundu, and H.-K. Na, “Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals,” Planta Medica, vol. 74, no. 13, pp. 1526–1539, 2008.
[102]
N. Platet, A. M. Cathiard, M. Gleizes, and M. Garcia, “Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion,” Critical Reviews in Oncology/Hematology, vol. 51, no. 1, pp. 55–67, 2004.
[103]
A. J. Lee, M. X. Cai, P. E. Thomas, A. H. Conney, and B. T. Zhu, “Characterization of the oxidative metabolites of 17β-estradiol and estrone formed by 15 selectively expressed human cytochrome P450 isoforms,” Endocrinology, vol. 144, no. 8, pp. 3382–3398, 2003.
[104]
H. S. Aiyer, M. V. Vadhanam, R. Stoyanova, G. D. Caprio, M. L. Clapper, and R. C. Gupta, “Dietary berries and ellagic acid prevent oxidative DNA damage and modulate expression of DNA repair genes,” International Journal of Molecular Sciences, vol. 9, no. 3, pp. 327–341, 2008.
[105]
H. S. Aiyer, S. Kichambare, and R. C. Gupta, “Prevention of oxidative DNA damage by bioactive berry components,” Nutrition and Cancer, vol. 60, supplement 1, pp. 36–42, 2008.
[106]
G. T. Wondrak, “Redox-directed cancer therapeutics: molecular mechanisms and opportunities,” Antioxidants and Redox Signaling, vol. 11, no. 12, pp. 3013–3069, 2009.
[107]
J.-C. Yang, M.-C. Lu, C.-L. Lee et al., “Selective targeting of breast cancer cells through ROS-mediated mechanisms potentiates the lethality of paclitaxel by a novel diterpene, gelomulide K,” Free Radical Biology and Medicine, vol. 51, no. 3, pp. 641–657, 2011.
[108]
D. Trachootham, J. Alexandre, and P. Huang, “Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 579–591, 2009.
[109]
L. M. Bystrom, M. L. Guzman, and S. Rivella, “Iron and reactive oxygen species: friends or foes of cancer cells?” Antioxidants and Redox Signaling, 2013.
[110]
A. Calzolari, I. Oliviero, S. Deaglio et al., “Transferrin receptor 2 is frequently expressed in human cancer cell lines,” Blood Cells, Molecules, and Diseases, vol. 39, no. 1, pp. 82–91, 2007.
[111]
T. R. Daniels, E. Bernabeu, J. A. Rodríguez et al., “The transferrin receptor and the targeted delivery of therapeutic agents against cancer,” Biochimica et Biophysica Acta, vol. 1820, no. 3, pp. 291–317, 2012.
[112]
B. R. You, S. Z. Kim, S. H. Kim, and W. H. Park, “Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion,” Molecular and Cellular Biochemistry, vol. 357, no. 1-2, pp. 295–303, 2011.
[113]
G. Chen, Z. Chen, Y. Hu, and P. Huang, “Inhibition of mitochondrial respiration and rapid depletion of mitochondrial glutathione by β-phenethyl isothiocyanate: mechanisms for anti-leukemia activity,” Antioxidants and Redox Signaling, vol. 15, no. 12, pp. 2911–2921, 2011.
[114]
C. Locatelli, P. C. Leal, R. A. Yunes, R. J. Nunes, and T. B. Creczynski-Pasa, “Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: the relationship between free radical generation, glutathione depletion and cell death,” Chemico-Biological Interactions, vol. 181, no. 2, pp. 175–184, 2009.
[115]
K. Piwocka, E. Jaruga, J. Skierski, I. Gradzka, and E. Sikora, “Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells,” Free Radical Biology and Medicine, vol. 31, no. 5, pp. 670–678, 2001.
[116]
M. K. Pandey, S. Kumar, R. K. Thimmulappa, V. S. Parmar, S. Biswal, and A. C. Watterson, “Design, synthesis and evaluation of novel PEGylated curcumin analogs as potent Nrf2 activators in human bronchial epithelial cells,” European Journal of Pharmaceutical Sciences, vol. 43, no. 1-2, pp. 16–24, 2011.
[117]
C. Yang, X. Zhang, H. Fan, and Y. Liu, “Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia,” Brain Research, vol. 1282, pp. 133–141, 2009.
[118]
E. S. Kang, G. H. Kim, H. J. Kim et al., “Nrf2 regulates curcumin-induced aldose reductase expression indirectly via nuclear factor-κB,” Pharmacological Research, vol. 58, no. 1, pp. 15–21, 2008.
[119]
D.-X. Hou, Y. Korenori, S. Tanigawa et al., “Dynamics of Nrf2 and Keap1 in ARE-mediated NQO1 expression by wasabi 6-(methylsulfinyl)hexyl isothiocyanate,” Journal of Agricultural and Food Chemistry, vol. 59, no. 22, pp. 11975–11982, 2011.
[120]
A. E. Wagner, C. Boesch-Saadatmandi, J. Dose, G. Schultheiss, and G. Rimbach, “Anti-inflammatory potential of allyl-isothiocyanate—role of Nrf2, NF-κB and microRNA-155,” Journal of Cellular and Molecular Medicine, vol. 16, no. 4, pp. 836–843, 2012.
[121]
I. M. Ernst, A. E. Wagner, C. Schuemann et al., “Allyl-, butyl- and phenylethyl-isothiocyanate activate Nrf2 in cultured fibroblasts,” Pharmacological Research, vol. 63, no. 3, pp. 233–240, 2011.
[122]
P. T. Schumacker, “Reactive oxygen species in cancer cells: live by the sword, die by the sword,” Cancer Cell, vol. 10, no. 3, pp. 175–176, 2006.
[123]
O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956.
[124]
Y. Yoshii, T. Furukawa, H. Yoshii et al., “Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism,” Cancer Science, vol. 100, no. 5, pp. 821–827, 2009.
[125]
S. Simizu, M. Takada, K. Umezawa, and M. Imoto, “Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs,” Journal of Biological Chemistry, vol. 273, no. 41, pp. 26900–26907, 1998.
[126]
J. Fang, T. Seki, and H. Maeda, “Therapeutic strategies by modulating oxygen stress in cancer and inflammation,” Advanced Drug Delivery Reviews, vol. 61, no. 4, pp. 290–302, 2009.
[127]
L. Raj, T. Ide, A. U. Gurkar et al., “Selective killing of cancer cells by a small molecule targeting the stress response to ROS,” Nature, vol. 475, no. 7355, pp. 231–234, 2011.
[128]
D. Trachootham, Y. Zhou, H. Zhang et al., “Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate,” Cancer Cell, vol. 10, no. 3, pp. 241–252, 2006.
[129]
N. Hail Jr., M. Cortes, E. N. Drake, and J. E. Spallholz, “Cancer chemoprevention: a radical perspective,” Free Radical Biology and Medicine, vol. 45, no. 2, pp. 97–110, 2008.
[130]
A. A. Powolny and S. V. Singh, “Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds,” Cancer Letters, vol. 269, no. 2, pp. 305–314, 2008.
[131]
M. Murata, N. Yamashita, S. Inoue, and S. Kawanishi, “Mechanism of oxidative DNA damage induced by carcinogenic allyl isothiocyanate,” Free Radical Biology and Medicine, vol. 28, no. 5, pp. 797–805, 2000.
[132]
H. Ahsan and S. M. Hadi, “Strand scission in DNA induced by curcumin in the presence of Cu(II),” Cancer Letters, vol. 124, no. 1, pp. 23–30, 1998.
[133]
A. Ghantous, H. Gali-Muhtasib, H. Vuorela, N. A. Saliba, and N. Darwiche, “What made sesquiterpene lactones reach cancer clinical trials?” Drug Discovery Today, vol. 15, no. 15-16, pp. 668–678, 2010.
[134]
N. P. Singh and K. B. Verma, “Case report of a laryngeal squamous cell carcinoma treated with artesunate,” Archive of Oncology, vol. 10, no. 4, pp. 279–280, 2002.
[135]
E. A. Curry III, D. J. Murry, C. Yoder et al., “Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer,” Investigational New Drugs, vol. 22, no. 3, pp. 299–305, 2004.
[136]
M. L. As, “Completed phase 2 clinical trials for parthenolide in treating allergic contact dermatitis,” 2006, http://clinicaltrials.gov/ct2/show/NCT00133341?term=Parthenolide&rank=1.
[137]
N. P. Singh and V. K. Panwar, “Case report of a pituitary macroadenoma treated with artemether,” Integrative Cancer Therapies, vol. 5, no. 4, pp. 391–394, 2006.
[138]
Z.-Y. Zhang, S.-Q. Yu, L.-Y. Miao et al., “Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: a randomized controlled trial,” Zhong Xi Yi Jie He Xue Bao, vol. 6, no. 2, pp. 134–138, 2008.
[139]
T. Efferth, “Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin—from bench to bedside,” Planta Medica, vol. 73, no. 4, pp. 299–309, 2007.
[140]
K. K. Gill, A. Kaddoumi, and S. Nazzal, “Mixed micelles of PEG2000-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: enhanced chemosenstization and antitumor efficacy against non-small cell lung cancer (NSCLC) cell lines,” European Journal of Pharmaceutical Sciences, vol. 46, no. 1-2, pp. 64–71, 2012.
[141]
I. Sohma, Y. Fujiwara, Y. Sugita et al., “Parthenolide, an NF-κB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer,” Cancer Genomics and Proteomics, vol. 8, no. 1, pp. 39–47, 2011.
[142]
M. R. Kreuger, S. Grootjans, M. W. Biavatti, P. Vandenabeele, and K. D'herde, “Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide,” Anti-Cancer Drugs, vol. 23, no. 9, pp. 883–896, 2012.
[143]
P. Ponka, C. Beaumont, and D. R. Richardson, “Function and regulation of transferrin and ferritin,” Seminars in Hematology, vol. 35, no. 1, pp. 35–54, 1998.
[144]
E. D. Harris, “Regulation of antioxidant enzymes,” The FASEB Journal, vol. 6, no. 9, pp. 2675–2683, 1992.
[145]
A. Gupte and R. J. Mumper, “Elevated copper and oxidative stress in cancer cells as a target for cancer treatment,” Cancer Treatment Reviews, vol. 35, no. 1, pp. 32–46, 2009.
[146]
R. J. Coates, N. S. Weiss, J. R. Daling, R. L. Rettmer, and G. R. Warnick, “Cancer risk in relation to serum copper levels,” Cancer Research, vol. 49, no. 15, pp. 4353–4356, 1989.
[147]
J. C. Kwok and D. R. Richardson, “The iron metabolism of neoplastic cells: alterations that facilitate proliferation?” Critical Reviews in Oncology/Hematology, vol. 42, no. 1, pp. 65–78, 2002.
[148]
T. Wu, C. T. Sempos, J. L. Freudenheim, P. Muti, and E. Smit, “Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults,” Annals of Epidemiology, vol. 14, no. 3, pp. 195–201, 2004.
[149]
H. W. Kuo, S. F. Chen, C. C. Wu, D. R. Chen, and J. H. Lee, “Serum and tissue trace elements in patients with breast cancer in Taiwan,” Biological Trace Element Research, vol. 89, no. 1, pp. 1–11, 2002.
[150]
A. Chan, F. Wong, and M. Arumanayagam, “Serum ultrafiltrable copper, total copper and caeruloplasmin concentrations in gynaecological carcinomas,” Annals of Clinical Biochemistry, vol. 30, no. 6, pp. 545–549, 1993.
[151]
M. Diez, M. Arroyo, F. J. Cerdan, M. Munoz, M. A. Martin, and J. L. Balibrea, “Serum and tissue trace metal levels in lung cancer,” Oncology, vol. 46, no. 4, pp. 230–234, 1989.
[152]
F. K. Habib, T. C. Dembinski, and S. R. Stitch, “The zinc and copper content of blood leucocytes and plasma from patients with benign and malignant prostates,” Clinica Chimica Acta, vol. 104, no. 3, pp. 329–335, 1980.
[153]
H. Mazdak, F. Yazdekhasti, A. Movahedian, N. Mirkheshti, and M. Shafieian, “The comparative study of serum iron, copper, and zinc levels between bladder cancer patients and a control group,” International Urology and Nephrology, vol. 42, no. 1, pp. 89–93, 2010.
[154]
A. Scanni, L. Licciardello, M. Trovato, M. Tomirotti, and M. Biraghi, “Serum copper and ceruloplasmin levels in patients with neoplasias localized in the stomach, large intestine or lung,” Tumori, vol. 63, no. 2, pp. 175–180, 1977.
[155]
X. L. Zuo, J. M. Chen, X. Zhou, X. Z. Li, and G. Y. Mei, “Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia,” Biological Trace Element Research, vol. 114, no. 1–3, pp. 41–54, 2006.
[156]
M. P. Silva, D. F. Soave, A. Ribeiro-Silva, and M. E. Poletti, “Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive x-ray fluorescence,” BMC Research Notes, vol. 5, article 194, 2012.
[157]
S. E. Bryan, D. L. Vizard, D. A. Beary, R. A. Labiche, and K. J. Hardy, “Partitioning of zinc and copper within subnuclear nucleoprotein particles,” Nucleic Acids Research, vol. 9, no. 21, pp. 5811–5824, 1981.
[158]
J. Prousek, “Fenton chemistry in biology and medicine,” Pure and Applied Chemistry, vol. 79, no. 12, pp. 2325–2338, 2007.
[159]
J. B. Jeong, E. W. Seo, and H. J. Jeong, “Effect of extracts from pine needle against oxidative DNA damage and apoptosis induced by hydroxyl radical via antioxidant activity,” Food and Chemical Toxicology, vol. 47, no. 8, pp. 2135–2141, 2009.
[160]
J. B. Jeong, B. O. De Lumen, and H. J. Jeong, “Lunasin peptide purified from Solanum nigrum L. protects DNA from oxidative damage by suppressing the generation of hydroxyl radical via blocking fenton reaction,” Cancer Letters, vol. 293, no. 1, pp. 58–64, 2010.
[161]
S. Khokhar and R. K. O. Apenten, “Iron binding characteristics of phenolic compounds: some tentative structure-activity relations,” Food Chemistry, vol. 81, no. 1, pp. 133–140, 2003.
[162]
M. Andjelkovi?, J. V. Camp, B. D. Meulenaer et al., “Iron-chelation properties of phenolic acids bearing catechol and galloyl groups,” Food Chemistry, vol. 98, no. 1, pp. 23–31, 2006.
[163]
Q. Ba, N. Zhou, J. Duan et al., “Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1,” PLoS One, vol. 7, no. 8, Article ID e42703, 2012.
[164]
A. M. Merlot, D. S. Kalinowski, and D. R. Richardson, “Novel chelators for cancer treatment: where are we now?” Antioxid Redox Signal, vol. 18, no. 8, pp. 973–1006, 2013.
[165]
N. G. Markova, N. Karaman-Jurukovska, K. K. Dong, N. Damaghi, K. A. Smiles, and D. B. Yarosh, “Skin cells and tissue are capable of using l-ergothioneine as an integral component of their antioxidant defense system,” Free Radical Biology and Medicine, vol. 46, no. 8, pp. 1168–1176, 2009.
[166]
B.-Z. Zhu, L. Mao, R.-M. Fan et al., “Ergothioneine prevents copper-induced oxidative damage to DNA and protein by forming a redox-inactive ergothioneine-copper complex,” Chemical Research in Toxicology, vol. 24, no. 1, pp. 30–34, 2011.
[167]
B. Halliwell, “Antioxidant defence mechanisms: from the beginning to the end (of the beginning),” Free Radical Research, vol. 31, no. 4, pp. 261–272, 1999.
[168]
S. Inoue, K. Ito, K. Yamamoto, and S. Kawanishi, “Caffeic acid causes metal-dependent damage to cellular and isolated DNA through H2O2 formation,” Carcinogenesis, vol. 13, no. 9, pp. 1497–1502, 1992.
[169]
N. Yamashita, H. Tanemura, and S. Kawanishi, “Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II),” Mutation Research, vol. 425, no. 1, pp. 107–115, 1999.
[170]
B. Bobrowska, D. Skrajnowska, and A. Tokarz, “Effect of Cu supplementation on genomic instability in chemically-induced mammary carcinogenesis in the rat,” Journal of Biomedical Science, vol. 18, article 95, 2011.
[171]
B. Bobrowska-Korczak, D. Skrajnowska, and A. Tokarz, “The effect of dietary zinc—and polyphenols intake on DMBA-induced mammary tumorigenesis in rats,” Journal of Biomedical Science, vol. 19, article 43, 2012.
[172]
L.-F. Zheng, Q.-Y. Wei, Y.-J. Cai et al., “DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: mechanism and structure-activity relationship,” Free Radical Biology and Medicine, vol. 41, no. 12, pp. 1807–1816, 2006.
[173]
B. Halliwell, “Vitamin C: antioxidant or pro-oxidant in vivo?” Free Radical Research, vol. 25, no. 5, pp. 439–454, 1996.
[174]
A. Rehman, C. S. Collis, M. Yang et al., “The effects of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers,” Biochemical and Biophysical Research Communications, vol. 246, no. 1, pp. 293–298, 1998.
[175]
N. R. Torshina, J. Z. Zhang, and D. E. Heck, “Catalytic therapy of cancer with porphyrins and ascorbate,” Cancer Letters, vol. 252, no. 2, pp. 216–224, 2007.
[176]
N. R. Torshina, J. Z. Zhang, and D. E. Heck, “Catalytic therapy of cancer with ascorbate and extracts of medicinal herbs,” Evidence-Based Complementary and Alternative Medicine, vol. 7, no. 2, pp. 203–212, 2010.
[177]
A. S. Azmi, S. H. Bhat, S. Hanif, and S. M. Hadi, “Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties,” The FEBS Letters, vol. 580, no. 2, pp. 533–538, 2006.
[178]
S. M. Hadi, M. F. Ullah, U. Shamim, S. H. Bhatt, and A. S. Azmi, “Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species,” Chemotherapy, vol. 56, no. 4, pp. 280–284, 2010.
[179]
H. Y. Khan, H. Zubair, M. F. Ullah, A. Ahmad, and S. M. Hadi, “Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: Implications for a cancer preventive mechanism,” BioMetals, vol. 24, no. 6, pp. 1169–1178, 2011.
[180]
H. Zubair, H. Y. Khan, M. F. Ullah, A. Ahmad, D. Wu, and S. M. Hadi, “Apogossypolone, derivative of gossypol, mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage,” European Journal of Pharmaceutical Sciences, vol. 47, no. 1, pp. 280–286, 2012.
[181]
T. J. Preston, J. T. Henderson, G. P. McCallum, and P. G. Wells, “Base excision repair of reactive oxygen species-initiated 7,8-dihydro-8-oxo-2′-deoxyguanosine inhibits the cytotoxicity of platinum anticancer drugs,” Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 2015–2026, 2009.
[182]
G. C. Das, A. Bacsi, M. Shrivastav, T. K. Hazra, and I. Boldogh, “Enhanced gamma-glutamylcysteine synthetase activity decreases drug-induced oxidative stress levels and cytotoxicity,” Molecular Carcinogenesis, vol. 45, no. 9, pp. 635–647, 2006.
[183]
C. Glorieux, N. Dejeans, B. Sid, R. Beck, P. B. Calderon, and J. Verrax, “Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy,” Biochemical Pharmacology, vol. 82, no. 10, pp. 1384–1390, 2011.
[184]
A. Lau, N. F. Villeneuve, Z. Sun, P. K. Wong, and D. D. Zhang, “Dual roles of Nrf2 in cancer,” Pharmacological Research, vol. 58, no. 5-6, pp. 262–270, 2008.
[185]
M. B. Sporn and K. T. Liby, “NRF2 and cancer: the good, the bad and the importance of context,” Nature Reviews Cancer, vol. 12, no. 8, pp. 564–571, 2012.
[186]
R. Ghaoui, B. C. Sallustio, P. C. Burcham, and F. R. Fontaine, “UDP-glucuronosyltransferase-dependent bioactivation of clofibric acid to a DNA-damaging intermediate in mouse hepatocytes,” Chemico-Biological Interactions, vol. 145, no. 2, pp. 201–211, 2003.
[187]
B. C. Sallustio, “Glucuronidation-dependent toxicity and bioactivation,” in Advances in Molecular Toxicology, J. C. Fishbein, Ed., vol. 2, pp. 57–86, Elsevier, Cambridge, Mass, USA, 2008.
[188]
B. C. Sallustio, L. A. Harkin, M. C. Mann, S. J. Krivickas, and P. C. Burcham, “Genotoxicity of acyl glucuronide metabolites formed from clofibric acid and gemfibrozil: a novel role for phase-II-mediated bioactivation in the hepatocarcinogenicity of the parent aglycones?” Toxicology and Applied Pharmacology, vol. 147, no. 2, pp. 459–464, 1997.
[189]
V. Peddireddy, B. Siva Prasad, S. D. Gundimeda, P. R. Penagaluru, and H. P. Mundluru, “Assessment of 8-oxo-7, 8-dihydro-2′-deoxyguanosine and malondialdehyde levels as oxidative stress markers and antioxidant status in non-small cell lung cancer,” Biomarkers, vol. 17, no. 3, pp. 261–268, 2012.