全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Catalytic Synthesis of Pyrano- and Furoquinolines Using Nano Silica Chromic Acid at Room Temperature

DOI: 10.1155/2013/693763

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nano silica chromic acid (nano-SCA) is found to catalyze efficiently the three component-coupling reactions of aldehydes, amines, and cyclic enol ethers such as 3,4-dihydro-2H-pyran and 2,3-dihydrofuran under mild conditions to afford the corresponding pyrano- and furanoquinolines in excellent yields with high endoselectivity. Interestingly, 2,3-dihydrofuran afforded selectively endoproducts under the similar reaction conditions. Heterogeneous reaction conditions, easy procedure, short reaction time, and high yields are some important advantages of this method. 1. Introduction Aza-Diels-Alder reactions rank among the most powerful methodologies for the construction of nitrogen-containing six-membered ring compounds [1]. The pyranoquinolines and furanoquinolines are a class of nitrogen-containing heterocycles which are synthesized by Aza-Diels-Alder methodology. Whereas pyranoquinolines exhibit biological properties such as psychotropic, antiallergic, anti-inflammatory, and estrogenic activities in addition to their use as pharmaceuticals [2, 3], the furanoquinolines function as antagonists of 5-hydroxytryptamine receptors in animals and have been found to be the most potent anti-inflammatory agents in addition to being the most potent anti-inflammatory agents [4]. The hetero-Diels-Alder reaction is becoming a mainstay for heterocycle and natural product synthesis [5, 6]. Pyranoquinoline derivatives are found to possess a wide spectrum of biological activities such as psychotropic, antiallergenic, anti-inflammatory, and estrogenic activity [7]. Generally these compounds are prepared by Aza-Diels-Alder reactions of imines derived from aldehydes and amines with dihydropyran or dihydrofuran. Transition-metal complexes such as Co2(CO)8, Ni(CO)4 [8, 9], and InCl3 [8, 9] find their use for this reaction, although BF3·OEt2 has been the most commonly used catalyst. Thirteen various methods [10] are reported in the literature which include the use of GdCl3, ZrCl4, LiClO4, LiBF4, I2, and montmorillonite clay to promote this reaction. Many Lewis acids cannot be utilized for the single-step coupling of aldehydes, amines, and enol ethers because they will be decomposed or deactivated by the amines and water formed in the intermediate imine-formation step. Most imines are hygroscopic, unstable at high temperature, and difficult to purify; so, a one-pot three-component coupling protocol is highly desirable. Nano silica chromic acid (nano-SCA) is a solid acid which can be used for different reactions either as reagent or as catalyst under heterogeneous conditions.

References

[1]  S. M. Weinreb, “Heterodienophile additions to dienes,” in Comprehensive Organic Synthesis, B. M. Trost, I. Fleming, and L. A. Paquette, Eds., vol. 5, p. 401, Pergamon Press, Oxford, UK, 1991.
[2]  R. W. Carling, P. D. Leeson, A. M. Moseley et al., “2-Carboxytetrahydroquinolines. Conformational and stereochemical requirements for antagonism of the glycine site on the NMDA receptor,” Journal of Medicinal Chemistry, vol. 35, no. 11, pp. 1942–1953, 1992.
[3]  M. Ramesh, P. S. Mohan, and P. Shanmugam, “A convenient synthesis of flindersine, atanine and their analogues,” Tetrahedron, vol. 40, no. 20, pp. 4041–4049, 1984.
[4]  J. Sharada, Y. R. Kumari, and M. Kanakalingeswara Rao, “Synthesis and biological activity of furoquinolines: 2-aroyl-4-methyl/4,6-dimethyl-3-phenyl-furo [3,2-c] quinolines,” Indian Journal of Pharmaceutical Sciences, vol. 49, no. 1, pp. 17–21, 1987.
[5]  D. L. Boger and S. M. Weinreb, Hetero Diels-Alder Methodology in Organic Synthesis, Chapters 2 and 9, Academic, San Diego, Calif, USA, 1987.
[6]  P. Buonora, J. C. Olsen, and T. Oh, “Recent developments in imino Diels-Alder reactions,” Tetrahedron, vol. 57, pp. 6099–6138, 2001.
[7]  J. V. Johnson, B. S. Rauckman, D. P. Baccanari, and B. Roth, “2,4-diamino-5-benzylpyrimidines and analogues as antibacterial agents. 12. 1,2-dihydroquinolylmethyl analogues with high activity and specificity for bacterial dihydrofolate reductase,” Journal of Medicinal Chemistry, vol. 32, no. 8, pp. 1942–1949, 1989.
[8]  R. Annunziata, M. Cinquini, F. Cozzi, V. Molteni, and O. Schupp, “A new multicomponent synthesis of 1,2,3,4-tetrahydroquinolines,” Tetrahedron, vol. 53, no. 28, pp. 9715–9726, 1997.
[9]  G. Babu and P. T. Perumal, “Convenient synthesis of pyrano[3,2-c]quinolines and indeno[2,1- c]quinolines by imino Diels-Alder reactions,” Tetrahedron Letters, vol. 39, no. 20, pp. 3225–3228, 1998.
[10]  L. S. Povarov, “αβ-unsaturated ethers and their analogues in reactions of diene synthesis,” Russian Chemical Reviews, vol. 36, no. 9, p. 656, 1967.
[11]  M. A. Zolfigol, “Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions,” Tetrahedron, vol. 57, no. 46, pp. 9509–9511, 2001.
[12]  M. A. Zolfigol, B. F. Mirjalili, A. Bamoniri et al., “Nitration of aromatic compounds on silica sulfuric acid,” Bulletin of the Korean Chemical Society, vol. 25, no. 9, pp. 1414–1416, 2004.
[13]  M. A. Zolfigol, M. Bagherzadeh, S. Mallakpour et al., “Mild and heterogeneous oxidation of urazoles to their corresponding triazolinediones via in situ generation Cl+ using silica sulfuric acid/KClO3 or silica chloride/oxone system,” Catalysis Communications, vol. 8, no. 3, pp. 256–260, 2007.
[14]  M. A. Zolfigol, R. Ghorbani-Vaghei, S. Mallakpour, G. Chehardoli, A. G. Choghamarani, and A. H. Yazdi, “Simple, convenient and heterogeneous method for conversion of urazoles to triazolinediones using N,N,N′,N′-tetrabromobenzene-1,3- disulfonylamide or trichloromelamine under mild and heterogeneous conditions,” Synthesis, no. 10, pp. 1631–1634, 2006.
[15]  A. R. Hajipour, A. Zarei, L. Khazdooz, S. A. Pourmousavi, and A. E. Ruoho, “Silicasulfuric acid/NaNO2 as a new reagent for deprotection of S,S-acetals under solvent-free conditions,” Bulletin of the Korean Chemical Society, vol. 26, no. 5, pp. 808–810, 2005.
[16]  E. Boanini, P. Torricelli, M. Gazzano, R. Giardino, and A. Bigi, “Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells,” Biomaterials, vol. 27, no. 25, pp. 4428–4433, 2006.
[17]  G. Sabitha, M. S. K. Reddy, K. Arundhathi, and J. S. Yadav, “VCl3-Catalyzed aza-Diels-Alder reaction: one-pot synthesis of pyrano[3,2-c]quinolines and furo[3,2-c]quinolines,” Arkivoc, vol. 2006, no. 6, pp. 153–160, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133