全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mesh Exposure and Associated Risk Factors in Women Undergoing Transvaginal Prolapse Repair with Mesh

DOI: 10.1155/2013/926313

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To determine frequency, rate, and risk factors associated with mesh exposure in women undergoing transvaginal prolapse repair with polypropylene mesh. Methods. Retrospective chart review was performed for all women who underwent Prolift Pelvic Floor Repair System (Gynecare, Somerville, NJ) between September 2005 and September 2008. Multivariable logistic regression was performed to identify risk factors for mesh exposure. Results. 201 women underwent Prolift. Mesh exposure occurred in 12% (24/201). Median time to mesh exposure was 62 days (range: 10–372). When mesh was placed in the anterior compartment, the frequency of mesh exposure was higher than that when mesh was placed in the posterior compartment (8.7% versus 2.9%, ). Independent risk factors for mesh exposure were diabetes (AOR?=?7.7, 95% CI 1.6–37.6; ) and surgeon (AOR?=?7.3, 95% CI 1.9–28.6; ). Conclusion. Women with diabetes have a 7-fold increased risk for mesh exposure after transvaginal prolapse repair using Prolift. The variable rate of mesh exposure amongst surgeons may be related to technique. The anterior vaginal wall may be at higher risk of mesh exposure as compared to the posterior vaginal wall. 1. Introduction Mesh augmentation has been widely adopted for pelvic floor reconstructive procedures [1]. Sacral colpopexy is considered to be the “gold standard” surgical procedure based on favorable subjective and objective outcomes and a relatively low complication rate [2–4]. It has demonstrated superior durability when compared to transvaginal plication techniques using native tissues [2, 5]. In 2004, the Food and Drug Administration (FDA) approved the first commercial “system” or “kit” for the transvaginal delivery of polypropylene mesh into the vesicovaginal and/or rectovaginal plane for the treatment of uterine or vaginal vault prolapse. The goal of transvaginal mesh augmentation was to provide the durability of sacral colpopexy while avoiding the morbidity associated with laparotomy or prolonged laparoscopy. Following FDA approval, transvaginal mesh kits were widely adopted with an estimated 75,000 transvaginal mesh procedures for prolapse performed in 2010 [6]. In 2008 and 2011, the FDA issued statements due to concern regarding the frequency of complications associated with the use of transvaginal mesh for prolapse repair [6, 7]. Mesh exposure appears to be the most common complication and is documented by the visualization of graft material within the vagina. Although this public advisory resulted in the removal of several mesh kits from the market, investigation of

References

[1]  S. J. Pulliam, T. R. Ferzandi, L. S. Hota, E. A. Elkadry, and P. L. Rosenblatt, “Use of synthetic mesh in pelvic reconstructive surgery: a survey of attitudes and practice patterns of urogynecologists,” International Urogynecology Journal, vol. 18, no. 12, pp. 1405–1408, 2007.
[2]  J. T. Benson, V. Lucente, and E. McClellan, “Vaginal versus abdominal reconstructive surgery for the treatment of pelvic support defects: a prospective randomized study with long-term outcome evaluation,” American Journal of Obstetrics & Gynecology, vol. 175, no. 6, pp. 1418–1422, 1996.
[3]  P. J. Culligan, M. Murphy, L. Blackwell et al., “Long-term success of abdominal sacral colpopexy using synthetic mesh,” American Journal of Obstetrics & Gynecology, vol. 187, no. 6, pp. 1473–1482, 2002.
[4]  I. E. Nygaard, R. McCreery, L. Brubaker et al., “Abdominal sacrocolpopexy: a comprehensive review,” Obstetrics and Gynecology, vol. 104, no. 4, pp. 805–823, 2004.
[5]  C. F. Maher, A. M. Qatawneh, P. L. Dwyer, M. P. Carey, A. Cornish, and P. J. Schluter, “Abdominal sacral colpopexy or vaginal sacrospinous colpopexy for vaginal vault prolapse: a prospective randomized study,” American Journal of Obstetrics & Gynecology, vol. 190, no. 1, pp. 20–26, 2004.
[6]  Food and Drug Administration, FDA safety communication: UPDATE on serious complications associated with transvaginal placement of surgical mesh for pelvic organ prolapse. Silver Spring (MD), FDA, 2011.
[7]  Food and Drug Administration, FDA public health notification: serious complications associated with transvaginal placement of surgical mesh in repair of pelvic organ prolapse and stress urinary incontinence. Silver Spring (MD), FDA, 2008.
[8]  L. Brubaker, I. E. Nygaard, H. E. Richter et al., “Two-year outcomes after sacrocolpopexy with and without Burch to prevent stress urinary incontinence,” Obstetrics and Gynecology, vol. 112, no. 1, pp. 49–55, 2008.
[9]  G. W. Cundiff, E. Varner, A. G. Visco et al., “Risk factors for mesh/suture erosion following sacral colpopexy,” American Journal of Obstetrics & Gynecology, vol. 199, no. 6, pp. 688.e1–688.e5, 2008.
[10]  B. Fatton, J. Amblard, P. Debodinance, M. Cosson, and B. Jacquetin, “Transvaginal repair of genital prolapse: preliminary results of a new tension-free vaginal mesh (ProliftTM technique)—a case series multicentric study,” International Urogynecology Journal, vol. 18, no. 7, pp. 743–752, 2007.
[11]  D. Altman, T. V?yrynen, M. E. Engh, et al., “Short-term outcome after transvaginal mesh repair of pelvic organ prolapse,” International Urogynecology Journal, vol. 19, no. 6, pp. 787–793, 2008.
[12]  A. L. Milani, M. I. J. Withagen, and M. E. Vierhout, “Trocar-guided total tension-free vaginal mesh repair of post-hysterectomy vaginal vault prolapse,” International Urogynecology Journal, vol. 20, no. 10, pp. 1203–1211, 2009.
[13]  P. Collinet, F. Belot, P. Debodinance, E. Ha Duc, J. P. Lucot, and M. Cosson, “Transvaginal mesh technique for pelvic organ prolapse repair: mesh exposure management and risk factors,” International Urogynecology Journal, vol. 17, no. 4, pp. 315–320, 2006.
[14]  M. Alperin, G. Sutkin, R. Ellison, L. Meyn, P. Moalli, and H. Zyczynki, “Perioperative outcomes of the Prolift pelvic floor repair systems following introduction to a urogynecology teaching service,” International Urogynecology Journal, vol. 19, no. 12, pp. 1617–1622, 2008.
[15]  C. B. Iglesia, A. I. Sokol, E. R. Sokol et al., “Vaginal mesh for prolapse: a randomized controlled trial,” Obstetrics and Gynecology, vol. 116, no. 2, pp. 293–303, 2010.
[16]  D. Miller, V. Lucente, E. Babin, P. Beach, P. Jones, and D. Robinson, “Prospective clinical assessment of the transvaginal mesh technique for treatment of pelvic organ prolapse-5-year results,” Female Pelvic Medicine and Reconstructive Surgery, vol. 17, no. 3, pp. 139–143, 2011.
[17]  Manufacturer's Instructions for Use guide: Gynecare Prolift Pelvic Floor Repair System: Surgical technique. Gynecare/Ethicon, Somerville, NJ, USA.
[18]  R. C. Bump, A. Mattiasson, K. Bo et al., “The standardization of terminology of female pelvic organ prolapse and pelvic floor dysfunction,” American Journal of Obstetrics & Gynecology, vol. 175, no. 1, pp. 10–17, 1996.
[19]  D. Dindo, N. Demartines, and P. A. Clavien, “Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey,” Annals of Surgery, vol. 240, no. 2, pp. 205–213, 2004.
[20]  B. Jacquetin and M. Cosson, “Complications of vaginal mesh: our experience,” International Urogynecology Journal, vol. 20, no. 8, pp. 893–896, 2009.
[21]  M. L. Mokrzycki and B. S. Hampton, “Pelvic arterial embolization in the setting of acute hemorrhage as a result of the anterior Prolift procedure,” International Urogynecology Journal, vol. 18, no. 7, pp. 813–815, 2007.
[22]  N. Gangam and A. Kanee, “Retroperitoneal hemorrhage after a vaginal mesh prolapse procedure,” Obstetrics and Gynecology, vol. 110, no. 2, pp. 463–464, 2007.
[23]  I. Ignjatovic and D. Stosic, “Retrovesical haematoma after anterior Prolift procedure for cystocele correction,” International Urogynecology Journal, vol. 18, no. 12, pp. 1495–1497, 2007.
[24]  C. A. LaSala and M. O. Schimpf, “Occurrence of postoperative hematomas after prolapse repair using a mesh augmentation system,” Obstetrics and Gynecology, vol. 109, no. 2, pp. 569–572, 2007.
[25]  C. Touboul, J. Nizard, A. Fauconnier, and G. Bader, “Major venous hemorrhagic complication during transvaginal cystocele repair using the transobturator approach,” Obstetrics and Gynecology, vol. 111, no. 2, pp. 492–495, 2008.
[26]  S. J. Duthie, D. Ven, G. L. K. Yung, D. Z. Guang, S. Y. W. Chan, and H.-K. Ma, “Discrepancy between laboratory determination and visual estimation of blood loss during normal delivery,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 38, no. 2, pp. 119–124, 1991.
[27]  R. Latham, A. D. Lancaster, J. F. Covington, et al., “The association of diabetes and glucose control with surgical-site infections among cardiothoracic surgery patients,” Infection Control and Hospital Epidemiology, vol. 22, no. 10, pp. 607–612, 2001.
[28]  H. P. Dietz, P. Vancaillie, M. Svehla, W. Walsh, A. B. Steensma, and T. G. Vancaillie, “Mechanical properties of urogynecologic implant materials,” International Urogynecology Journal, vol. 14, no. 4, pp. 239–243, 2003.
[29]  M. Carey, P. Higgs, J. Goh et al., “Vaginal repair with mesh versus colporrhaphy for prolapse: a randomised controlled trial,” BJOG: An International Journal of Obstetrics and Gynaecology, vol. 116, no. 10, pp. 1380–1386, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133