全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reviewing the Literature on the Effectiveness of Pressure Relieving Movements

DOI: 10.1155/2013/124095

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sitting for prolonged periods of time increases seating interface pressures, which is known to increase the risk of developing pressure ulcers. Those at risk of developing pressure ulcers are advised to perform pressure relieving movements such as “pushups” or “forward leans” in order to reduce the duration and magnitude of pressure acting on the vulnerable ischial tuberosity region. The aim of this review was to synthesize and critique the existing literature investigating the effectiveness of pressure relieving movements on seating interface pressures. The twenty-seven articles included in this paper highlight the need for further research investigating the effect of recommended pressure relieving movements on the pressures around the ischial tuberosities. Furthermore, this review found that the majority of individuals at risk of developing pressure ulcers do not adhere with the pressure relieving frequency or magnitude of movements currently recommended, indicating a need for pressure ulcer prevention to be explored further. 1. Introduction Sitting for prolonged periods of time is thought to increase the risk of developing pressure ulcers [1, 2]. Sitting forces the weight of an individual against the supporting seat surface which compresses the soft tissues around the buttock area between the chair and the bony ischial tuberosities. This pressure causes an obstruction of blood flow that when combined with limited movement, poor sensation, malnutrition, and increased age can eventually lead to ulceration [3–5]. These severe, yet usually preventable wounds are relatively common, spanning acute, rehabilitation, and community settings [6, 7], as such, the treatment of pressure ulcers is considered to outweigh the social and financial costs associated with prevention [7]. One of the most effective preventative methods in terms of cost and pressure relief is regular repositioning [8]. Within rehabilitation, individuals at risk of developing pressure ulcers are taught and encouraged to perform regular repositioning movements in order to redistribute the build-up of pressure around the ischial tuberosity and sacral regions. These repositioning movements include vertical pushups, lateral and forward leans. Occupational therapists being responsible for seating and postural care are ideally placed to educate the individual and their carers on good skin health and the importance of relieving pressure at the seating interface regularly [9]. Currently, individuals “at risk” are advised to change their posture by performing pressure relieving movements as often as

References

[1]  K. Vanderwee, M. H. F. Grypdonck, D. De Bacquer, and T. Defloor, “Effectiveness of turning with unequal time intervals on the incidence of pressure ulcer lesions,” Journal of Advanced Nursing, vol. 57, no. 1, pp. 59–68, 2007.
[2]  A. Gefen, “The biomechanics of sitting-acquired pressure ulcers in patients with spinal cord injury or lesions,” International Wound Journal, vol. 4, no. 3, pp. 222–236, 2007.
[3]  C. V. Bouten, C. W. Oomens, F. P. Baaijens, and D. L. Bader, “The etiology of pressure ulcers: skin deep or muscle bound?” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 4, pp. 616–619, 2003.
[4]  D. Bader, C. Oomens, F. Baaijens, and C. Bouten, “The aetiopathology of pressure ulcers: a hierarchical approach. Chapter 1,” in Pressure Ulcer Research: Current and Future Perspectives, D. Bader, C. Bouten, D. Colin, and C. W. J. Oomens, Eds., Springer, Berlin, Germany, 2005.
[5]  A. F. T. Mak, M. Zhang, and E. W. C. Tam, “Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion,” Annual Review of Biomedical Engineering, vol. 12, pp. 29–53, 2010.
[6]  J. L. Prentice and M. C. Stacey, “Pressure ulcers: the case for improving prevention and management in Australian health care settings,” Primary Intention, vol. 9, no. 3, pp. 111–120, 2001.
[7]  C. VanGilder, G. MacFarlane, S. Meyer, and C. Lachenbruch, “Body mass index, weight, and pressure ulcer prevalence: an analysis of the 2006-2007 international pressure ulcer prevalence? surveys,” Journal of Nursing Care Quality, vol. 24, no. 2, pp. 127–135, 2009.
[8]  S. Sprigle and S. Sonenblum, “Assessing evidence supporting redistribution of pressure for pressure ulcer prevention: a review,” Journal of Rehabilitation Research and Development, vol. 48, no. 3, pp. 203–213, 2011.
[9]  A. Rose and L. MacKenzie, “'Beyond the cushion': a study of occupational therapists' perceptions of their role and clinical decisions in pressure care,” Disability and Rehabilitation, vol. 32, no. 13, pp. 1099–1108, 2010.
[10]  National Pressure Ulcer Advisory Panel, Treatment of Pressure Ulcers: Quick Reference Guide, National Pressure Ulcer Advisory Panel, Washington, DC, USA, 2009.
[11]  European Pressure Ulcer Advisory Panel, Prevention and Treatment of Pressure Ulcers: Quick Reference Guide, National Pressure Ulcer Advisory Panel, Washington, DC, USA, 2009.
[12]  J. H. A. Bloemen-Vrencken, L. P. De Witte, M. W. M. Post, and W. J. A. Van Den Heuvel, “Health behaviour of persons with spinal cord injury,” Spinal Cord, vol. 45, no. 3, pp. 243–249, 2007.
[13]  S. D. Pruitt, D. R. Wahlgren, J. E. Epping-Jordan, and A. L. Rossi, “Health behaviour in persons with spial cord injury: development and initial validity of an outcome measure,” Spinal Cord, vol. 36, no. 10, pp. 724–731, 1998.
[14]  J. Ware Jr and C. D. Sherbourne, “The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection,” Medical Care, vol. 30, no. 6, pp. 473–483, 1992.
[15]  M. J. Coggrave and L. S. Rose, “A specialist seating assessment clinic: changing pressure relief practice,” Spinal Cord, vol. 41, no. 12, pp. 692–695, 2003.
[16]  D. Ding, E. Leister, R. A. Cooper et al., “Usage of tilt-in-space, recline, and elevation seating functions in natural environment of wheelchair users,” Journal of Rehabilitation Research and Development, vol. 45, no. 7, pp. 973–984, 2008.
[17]  E. C. Field-Fote and S. S. Ray, “Seated reach distance and trunk excursion accurately reflect dynamic postural control in individuals with motor-incomplete spinal cord injury,” Spinal Cord, vol. 48, no. 10, pp. 745–749, 2010.
[18]  G. K. Karata?, A. K. Tosun, and U. Kanatli, “Center-of-pressure displacement during postural changes in relation to pressure ulcers in spinal cord-injured patients,” American Journal of Physical Medicine and Rehabilitation, vol. 87, no. 3, pp. 177–182, 2008.
[19]  H. M. Kerr and J. J. Eng, “Multidirectional measures of seated postural stability,” Clinical Biomechanics, vol. 17, no. 7, pp. 555–557, 2002.
[20]  K. Kobara, A. Eguchi, S. Watanabe, and K. Shinkoda, “The influence of the distance between the backrest of a chair and the position of the pelvis on the maximum pressure on the ischium and estimated shear force.,” Disability and Rehabilitation, vol. 3, no. 5, pp. 285–291, 2008.
[21]  M. Lacoste, R. Weiss-Lambrou, M. Allard, and J. Dansereau, “Powered tilt/recline systems: why and how are they used?” Assistive Technology, vol. 15, no. 1, pp. 58–68, 2003.
[22]  M. Lacoste, M. Therrien, J. N. C?té, I. Shrier, H. Labelle, and F. Prince, “Assessment of seated postural control in children: comparison of a force platform versus a pressure mapping system,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 12, pp. 1623–1629, 2006.
[23]  E. Linder-Ganz, M. Scheinowitz, Z. Yizhar, S. S. Margulies, and A. Gefen, “How do normals move during prolonged wheelchair-sitting?” Technology and Health Care, vol. 15, no. 3, pp. 195–202, 2007.
[24]  M. Makhsous, M. Priebe, J. Bankard et al., “Measuring tissue perfusion during pressure relief maneuvers: insights into preventing pressure ulcers,” Journal of Spinal Cord Medicine, vol. 30, no. 5, pp. 497–507, 2007.
[25]  M. Makhsous, D. M. Rowles, W. Z. Rymer et al., “Periodically relieving ischial sitting load to decrease the risk of pressure ulcers,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 7, pp. 862–870, 2007.
[26]  C. L. Maurer and S. Sprigle, “Effect of seat inclination on seated pressures of individuals with spinal cord injury,” Physical Therapy, vol. 84, no. 3, pp. 255–261, 2004.
[27]  N. C. C. M. Moes, “Variation in sitting pressure distribution and location of the points of maximum pressure with rotation of the pelvis, gender and body characteristics,” Ergonomics, vol. 50, no. 4, pp. 536–561, 2007.
[28]  C. C. M. Moes, “Calibration of a pressure distribution measuring device,” Technical Report, Delft University of Technology, Delft, the Netherlands, 1999.
[29]  J. D. Chodera and M. Lord, “Paedobarographic foot pressure measurements and their applications,” in Proceedings of the Strathclyde Bioengineering Seminar on Disability, P. H. Kenedi, Ed., pp. 173–181, University of Strathclyde, Glasgow, Scotland, McMillan Press, London, UK, August 1978.
[30]  K. Olsson, A. Blomkvist, and E. Beckung, “Pressure mapping as a complement in clinical sitting analysis in children during activity,” Advances in Physiotherapy, vol. 10, no. 2, pp. 76–84, 2008.
[31]  M. B. Parkinson, D. B. Chaffin, and M. P. Reed, “Center of pressure excursion capability in performance of seated lateral-reaching tasks,” Clinical Biomechanics, vol. 21, no. 1, pp. 26–32, 2006.
[32]  J. Reenalda, P. Van Geffen, M. Nederhand, M. Jannink, M. Ijzerman, and H. Rietman, “Analysis of healthy sitting behavior: interface pressure distribution and subcutaneous tissue oxygenation,” Journal of Rehabilitation Research and Development, vol. 46, no. 5, pp. 577–586, 2009.
[33]  S. E. Sonenblum, S. Sprigle, and C. L. Maurer, “Use of power tilt systems in everyday life,” Disability and Rehabilitation: Assistive Technology, vol. 4, no. 1, pp. 24–30, 2009.
[34]  S. E. Sonenblum, S. Sprigle, F. H. Harris, and C. L. Maurer, “Characterization of power wheelchair use in the home and community,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 3, pp. 486–491, 2008.
[35]  S. E. Sonenblum and S. H. Sprigle, “The impact of tilting on blood flow and localized tissue loading,” Journal of Tissue Viability, vol. 20, no. 1, pp. 3–13, 2011.
[36]  S. E. Sonenblum and S. Sprigle, “Distinct tilting behaviours with power tilt-in-space systems,” Disability and Rehabilitation: Assistive Technology, vol. 6, no. 6, pp. 526–535, 2011.
[37]  S. Sprigle, C. Maurer, and S. E. Sorenblum, “Load redistribution in variable position wheelchairs in people with spinal cord injury,” Journal of Spinal Cord Medicine, vol. 33, no. 1, pp. 58–64, 2010.
[38]  M. D. Stinson, A. Porter-Armstrong, and P. Eakin, “Seat-interface pressure: a pilot study of the relationship to gender, body mass index, and seating position,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 3, pp. 405–409, 2003.
[39]  L. Stockton and D. Parker, “Pressure relief behaviour and the prevention of pressure ulcers in wheelchair users in the community.,” Journal of Tissue Viability, vol. 12, no. 3, pp. 84–92, 2002.
[40]  P. van Geffen, J. Reenalda, P. H. Veltink, and B. F. J. M. Koopman, “Effects of sagittal postural adjustments on seat reaction load,” Journal of Biomechanics, vol. 41, no. 10, pp. 2237–2245, 2008.
[41]  P. van Geffen, J. Reenalda, P. H. Veltink, and B. F. J. M. Koopman, “Decoupled pelvis rotation in sitting: a passive motion technique that regulates buttock load associated with pressure ulcer development,” Journal of Biomechanics, vol. 42, no. 9, pp. 1288–1294, 2009.
[42]  G. A. Vos, J. J. Congleton, J. Steven Moore, A. A. Amendola, and L. Ringer, “Postural versus chair design impacts upon interface pressure,” Applied Ergonomics, vol. 37, no. 5, pp. 619–628, 2006.
[43]  Y. S. Yang, G. L. Chang, M. J. Hsu, and J. J. Chang, “Remote monitoring of sitting behaviors for community-dwelling manual wheelchair users with spinal cord injury,” Spinal Cord, vol. 47, no. 1, pp. 67–71, 2009.
[44]  National Pressure Ulcer Advisory Panel, Pressure Ulcer Prevention Points, National Pressure Ulcer Advisory Panel, Washington, DC, USA, 2007.
[45]  G. Kyung and M. A. Nussbaum, “Driver sitting comfort and discomfort (part II): relationships with and prediction from interface pressure,” International Journal of Industrial Ergonomics, vol. 38, no. 5-6, pp. 526–538, 2008.
[46]  K. Uenishi, M. Tanaka, H. Yoshida, S. Tsutsumi, and N. Miyamoto, “Driver's fatigue evaluation during long term driving for automotive seat development,” SAE Technical Paper Series 2002-01-0773, 2002.
[47]  S. H. Sprigle, T. E. Faisant, and K. C. Chung, “Clinical evaluation of custom-contoured cushions for the spinal cord injured,” Archives of Physical Medicine and Rehabilitation, vol. 71, no. 9, pp. 655–658, 1990.
[48]  NICE Clinical Guideline 29, Pressure Ulcer Prevention, National Institute of Clinical Excellence, London, UK, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133