全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adopting Best Practices from Team Science in a Healthcare Improvement Research Network: The Impact on Dissemination and Implementation

DOI: 10.1155/2013/814360

Full-Text   Cite this paper   Add to My Lib

Abstract:

Healthcare is a complex adaptive system, and efforts to improve through the implementation of best practice are well served by various interacting disciplines within the system. As a transdisciplinary model is new to clinicians, an infrastructure that creates academic-practice partnerships and builds capacity for scientific collaboration is necessary to test, spread, and implement improvement strategies. This paper describes the adoption of best practices from the science of team science in a healthcare improvement research network and the impact on conducting a large-scale network study. Key components of the research network infrastructure were mapped to a team science framework and evaluated in terms of their effectiveness and impact on a national study of nursing operations. Results from this study revealed an effective integration of the team science principles which facilitated the rapid collection of a large dataset. Implications of this study support a collaborative model for improvement research and stress a need for future research and funding to further evaluate the impact on dissemination and implementation. 1. Introduction Healthcare has been described as a complex adaptive system (CAS) that involves multiple, interdependent entities and organizational levels [1–3]. Such complexity poses a challenge for transformative change as relationships within a CAS are nonlinear and unpredictable [4, 5]. This challenge is echoed by leaders in the field of quality improvement who have identified shortcomings, such as a lack of rigorous research methods, a failure to study contextual variables, and weak evaluation designs [6–8]. These shortcomings are an indication that the interwoven processes of healthcare delivery are difficult for a single investigator to tease apart. Thus, a collaborative model that integrates multiple perspectives from several disciplines may help advance the field of improvement science and facilitate dissemination and implementation strategies. Transdisciplinary collaboration is a potentially effective model as it brings together a diverse group of individuals who fully integrate theories, methodologies, and frameworks from their respective fields to work as a cohesive unit on complex issues [9]. This differs from multidisciplinary and interdisciplinary collaboration where multiple individuals work together but remain grounded in their respective ideologies [9–11]. Recently, a few studies have addressed the potential of transdisciplinary collaboration to develop effective interventions in healthcare [12–14]. Despite these

References

[1]  J. W. Begun, B. Zimmerman, and K. Dooley, “Health care organizations as complex adaptive systems,” in Advances in Health Care Organization Theory, S. M. Mick and M. Wyttenbach, Eds., pp. 253–288, Jossey-Bass, San Francisco, Calif, USA, 2003.
[2]  R. R. McDaniel and D. J. Driebe, “Complexity science and health care management,” Advances in Health Care Management, vol. 2, pp. 11–36, 2001.
[3]  W. B. Rouse, “Health care as a complex adaptive system: implications for design and management,” The Bridge, vol. 38, no. 1, pp. 17–25, 2008.
[4]  H. J. Lanham, R. R. Mcdaniel, B. F. Crabtree et al., “How improving practice relationships among clinicians and nonclinicians can improve quality in primary care,” Joint Commission Journal on Quality and Patient Safety, vol. 35, no. 9, pp. 457–466, 2009.
[5]  P. E. Plsek and T. Greenhalgh, “The challenge of complexity in health care,” British Medical Journal, vol. 323, no. 7313, pp. 625–628, 2001.
[6]  K. R. Stevens, “Delivering on the promise of EBP,” Nursing Management, vol. 43, no. 4, pp. 19–21, 2012.
[7]  J. Ovretveit, “Understanding the conditions for improvement: research to discover which context influences affect improvement success,” BMJ Quality and Safety, vol. 20, supplement 1, pp. i18–i23, 2011.
[8]  R. E. Glasgow and K. M. Emmons, “How can we increase translation of research into practice? Types of evidence needed,” Annual Review of Public Health, vol. 28, pp. 413–433, 2007.
[9]  P. L. Rosenfield, “The potential of transdisciplinary research for sustaining and extending linkages between the health and social sciences,” Social Science and Medicine, vol. 35, no. 11, pp. 1343–1357, 1992.
[10]  K. B?rner, N. Contractor, H. J. Falk-Krzesinski et al., “A multi-level systems perspective for the science of team science,” Science Translational Medicine, vol. 2, no. 49, p. 49cm24, 2010.
[11]  D. Stokols, J. Fuqua, J. Gress et al., “Evaluating transdisciplinary science,” Nicotine and Tobacco Research, vol. 5, no. 1, pp. S21–S39, 2003.
[12]  S. Gehlert, A. Murray, D. Sohmer, M. McClintock, S. Conzen, and O. Olopade, “The importance of transdisciplinary collaborations for understanding and resolving health disparities,” Social Work in Public Health, vol. 25, no. 3-4, pp. 408–422, 2010.
[13]  K. M. Emmons, K. Viswanath, and G. A. Colditz, “The role of transdisciplinary collaboration in translating and disseminating health research: lessons learned and exemplars of success,” American Journal of Preventive Medicine, vol. 35, no. 2, supplement, pp. S204–S210, 2008.
[14]  D. B. Abrams, “Applying transdisciplinary research strategies to understanding and eliminating health disparities,” Health Education and Behavior, vol. 33, no. 4, pp. 515–531, 2006.
[15]  L. J. Damschroder, D. C. Aron, R. E. Keith, S. R. Kirsh, J. A. Alexander, and J. C. Lowery, “Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science,” Implementation Science, vol. 4, no. 1, article 50, 2009.
[16]  D. M. Berwick, “The science of improvement,” JAMA, vol. 299, no. 10, pp. 1182–1184, 2008.
[17]  W. M. Trochim, S. E. Marcus, L. C. Masse, R. P. Moser, and P. C. Weld, “The evaluation of large research initiatives: a participatory integrative mixed-methods approach,” American Journal of Evaluation, vol. 29, no. 1, pp. 8–28, 2008.
[18]  B. Boushon, L. Provost, J. Gagnon, and P. Carver, “Using a virtual breakthrough series collaborative to improve access in primary care,” Joint Commission Journal on Quality and Patient Safety, vol. 32, no. 10, pp. 573–584, 2006.
[19]  R. E. Glasgow, L. W. Green, and M. V. Taylor, “An evidence integration triangle for aligning science with policy and practice,” American Journal of Preventive Medicine, vol. 42, no. 6, pp. 646–654, 2012.
[20]  L. Neuhauser, D. Richardson, S. Mackenzie, and M. Minkler, “Advancing transdisciplinary and translational research practice: issues and models of doctoral education in public health,” Journal of Research Practice, vol. 3, no. 2, article 19, 2007.
[21]  H. J. Falk-Krzesinski, K. B?rner, N. Contractor et al., “Advancing the science of team science,” Clinical and Translational Science, vol. 3, no. 5, pp. 263–266, 2010.
[22]  G. M. Olson, A. Zimmerman, and N. Bos, Scientific Collaboration on the Internet. Acting with Technology, MIT Press, Cambridge, Mass, USA, 2008.
[23]  D. Stokols, R. Harvey, J. Gress, J. Fuqua, and K. Phillips, “In vivo studies of transdisciplinary scientific collaboration: lessons learned and implications for active living research,” American Journal of Preventive Medicine, vol. 28, no. 2, supplement 2, pp. 202–213, 2005.
[24]  K. L. Hall, A. X. Feng, R. P. Moser, D. Stokols, and B. K. Taylor, “Moving the science of team science forward: collaboration and creativity,” American Journal of Preventive Medicine, vol. 35, no. 2, supplement, pp. S243–S249, 2008.
[25]  J. S. Olson, E. Hofer, N. Bos et al., “A theory of remote scientific collaboration (TORSC),” in Scientific Collaboration on the Internet, G. M. Olson, A. Zimmerman, and N. Bos, Eds., MIT Press, Cambridge, Mass, USA, 2008.
[26]  B. Gray, “Enhancing transdisciplinary research through collaborative leadership,” American Journal of Preventive Medicine, vol. 35, no. 2, supplement, pp. S124–S132, 2008.
[27]  G. M. Olson and J. S. Olson, “Distance matters,” Human-Computer Interaction, vol. 15, no. 2-3, pp. 139–178, 2000.
[28]  D. Stokols, K. L. Hall, B. K. Taylor, and R. P. Moser, “The science of team science: overview of the field and introduction to the supplement,” American Journal of Preventive Medicine, vol. 35, no. 2, supplement, pp. S77–S89, 2008.
[29]  K. L. Hall, D. Stokols, R. P. Moser et al., “The collaboration readiness of transdisciplinary research teams and centers: findings from the National Cancer Institute's TREC Year-One evaluation study,” American Journal of Preventive Medicine, vol. 35, no. 2, supplement, pp. S161–S172, 2008.
[30]  J. E. Mathieu, G. F. Goodwin, T. S. Heffner, E. Salas, and J. A. Cannon-Bowers, “The influence of shared mental models on team process and performance,” Journal of Applied Psychology, vol. 85, no. 2, pp. 273–283, 2000.
[31]  B. D. Edwards, E. A. Day, W. Arthur, and S. T. Bell, “Relationships among team ability composition, team mental models, and team performance,” Journal of Applied Psychology, vol. 91, no. 3, pp. 727–736, 2006.
[32]  E. Salas, D. DiazGranados, S. J. Weaver, and H. King, “Does team training work? Principles for health care,” Academic Emergency Medicine, vol. 15, no. 11, pp. 1002–1009, 2008.
[33]  H. Beyer and K. Holtzblatt, Contextual Design: 4 Customer-Centered Approach to Systems Designs, Morgan Kaufmann Series in Interactive Technologies, Morgan Kaufmann, 1997.
[34]  W. A. Wulf, “The collaboratory opportunity,” Science, vol. 261, no. 5123, pp. 854–855, 1993.
[35]  K. R. Stevens, F. Puga, and D. Patel, Building Successful Research Collaboratives for Healthcare Improvement, Academic Center for Evidence-Based Practice, UT Health Science Center San Antonio, San Antonio, Tex, USA, 2012.
[36]  D. A. Dillman, J. D. Symyth, and L. M. Christian, Internet, Mail, and Mixed-Mode Surveys: The Tailored Design Method, John Wiley & Sons, New York, NY, USA, 3rd edition, 2008.
[37]  G. M. Olson and J. S. Olson, Collaboration Success Wizard (National Science Foundation under Grant No. 1025769 and U.S. Army Research Institute under contract number W91WAW-07-C-0060), 2012, http://hana.ics.uci.edu/wizard/.
[38]  Improvement Science Research Network. Research priorities, 2010, http://www.isrn.net/research.
[39]  R. E. Glasgow, C. Vinson, D. Chambers, M. J. Khoury, R. M. Kaplan, and C. Hunter, “National institutes of health approaches to dissemination and implementation science: current and future directions,” American Journal of Public Health, vol. 102, no. 7, pp. 1274–1281, 2012.
[40]  E. K. Proctor, J. Landsverk, G. Aarons, D. Chambers, C. Glisson, and B. Mittman, “Implementation research in mental health services: an emerging science with conceptual, methodological, and training challenges,” Administration and Policy in Mental Health and Mental Health Services Research, vol. 36, no. 1, pp. 24–34, 2009.
[41]  R. E. Glasgow, E. Lichtenstein, and A. C. Marcus, “Why don't we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition,” American Journal of Public Health, vol. 93, no. 8, pp. 1261–1267, 2003.
[42]  M. Wensing, J. M. Grimshaw, and M. P. Eccles, “Does the world need a scientific society for research on how to improve healthcare?” Implementation Science, vol. 7, no. 1, article 10, 2012.
[43]  S. Michie, D. Fixsen, J. M. Grimshaw, and M. P. Eccles, “Specifying and reporting complex behaviour change interventions: the need for a scientific method,” Implementation Science, vol. 4, no. 1, article 40, 2009.
[44]  M. J. Bietz, S. Abrams, D. M. Cooper et al., “Improving the odds through the Collaboration Success Wizard,” Translational Behavioral Medicine, vol. 2, no. 4, pp. 480–486, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133