全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Major Depressive Disorder and Measures of Cellular Aging: An Integrative Review

DOI: 10.1155/2013/469070

Full-Text   Cite this paper   Add to My Lib

Abstract:

Major depressive disorder (MDD) affects millions of individuals and causes significant suffering worldwide. It has been speculated that MDD is associated with accelerated aging-related biological and functional decline. To examine the accelerated aging hypothesis, one of the biomarkers under study is leukocyte telomeres, and specifically the measure of telomere length and telomerase activity. This review integrates findings from eleven human studies which evaluated telomere length and telomerase activity, in order to synthesize the state of the current science and to inform the development of new knowledge and enhance nursing research of depression using appropriate biobehavioral measures. Although preliminary, the findings from this integrated review suggest that there is evidence to support a conceptualization of depression as a stress-related condition in which telomeres shorten over time in relation to cumulative exposure to the chronic stress of depression. For the purposes of testing in future nursing research, visual representations of the theoretical connection between stress vulnerabilities, depression, and health outcomes and key moderators and mediators involved in this conceptualization are provided. The findings from this review and the conceptual framework provided may be a useful step towards advancing therapeutic nursing interventions for this debilitating chronic condition. 1. Introduction Major depressive disorder (MDD) affects millions of individuals and causes significant suffering worldwide. The lifetime prevalence of MDD is approximately 16.2% [1] with women experiencing a disproportionately higher burden of MDD than men [2, 3]. The current DSM-IV-TR diagnostic criteria for MDD include a depressed mood and/or anhedonia for at least two weeks, plus additional symptoms such as excessive worrying, guilt, suicidal ideations, psychomotor changes, and alterations in sleep, weight, appetite, and cognitions [4]. Up to 50% of depressed individuals experience inadequate symptom relief from typical pharmacologic treatments [5]. Those with partial or no responses to treatment experience significant decreases in quality of life and functionality [6]. In addition to prolonged psychological distress, individuals with major mental illnesses, such as MDD, have shorter life expectancies and higher rates of other chronic medical conditions, such as cardiovascular disease, metabolic disorders, and chronic pain conditions [7, 8] compared with the general population. Thus, it has been speculated that MDD is associated with accelerated aging-related

References

[1]  R. C. Kessler, K. R. Merikangas, and P. S. Wang, “Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century,” Annual Review of Clinical Psychology, vol. 3, pp. 137–158, 2007.
[2]  S. M. Marcus, K. B. Kerber, A. J. Rush et al., “Sex differences in depression symptoms in treatment-seeking adults: confirmatory analyses from the sequenced treatment alternatives to relieve depression study,” Comprehensive Psychiatry, vol. 49, no. 3, pp. 238–246, 2008.
[3]  S. Nolen-Hoeksema and L. M. Hilt, “Gender differences in depression,” in Handbook of Depression, C. L. Hammen, Ed., pp. 386–404, Guilford Press, New York, NY, USA, 2nd edition, 2009.
[4]  American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders: Fourth Edition, Text Revision (DSM-IV-TR), American Psychiatric Association, Arlington, Va, USA, 4th edition, 2000.
[5]  B. Gaynes, L. Lux, S. Lloyd et al., “Nonpharmacologic interventions for treatment-resistant depression in adults. Comparative effectiveness review no. 33,” in AHRQ Publication No. 11-EHC056-EF, Agency for Healthcare Research and Quality (AHRQ), Rockville, Md, USA, 2011.
[6]  J. A. Mauskopf, G. E. Simon, A. Kalsekar, C. Nimsch, E. Dunayevich, and A. Cameron, “Nonresponse, partial response, and failure to achieve remission: humanistic and cost burden in major depressive disorder,” Depression and Anxiety, vol. 26, no. 1, pp. 83–97, 2009.
[7]  C. W. Colton and R. W. Manderscheid, “Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states,” Preventing Chronic Disease, vol. 3, no. 2, p. A42, 2006.
[8]  D. J. Kupfer, E. Frank, and M. L. Phillips, “Major depressive disorder: new clinical, neurobiological, and treatment perspectives,” The Lancet, vol. 379, no. 9820, pp. 1045–1055, 2012.
[9]  P. A. Kinser, L. E. Goehler, and A. G. Taylor, “How might yoga help depression? A neurobiological perspective,” Explore, vol. 8, no. 2, pp. 118–126, 2012.
[10]  S. Cohen, D. Janicki-Deverts, and G. E. Miller, “Psychological stress and disease,” Journal of the American Medical Association, vol. 298, no. 14, pp. 1685–1687, 2007.
[11]  C. Hammen, “Stress and depression,” Annual Review of Clinical Psychology, vol. 1, pp. 293–319, 2005.
[12]  S. E. Romans, E. Asllani, R. F. Clarkson, S. Meiyappan, M. J. Petrovic, and D. Tang, “Women's perceptions of influences on their mood,” Women and Health, vol. 49, no. 1, pp. 32–49, 2009.
[13]  G. B. Stefano, J. M. Stefano, and T. Esch, “Anticipatory stress response: a significant commonality in stress, relaxation, pleasure and love responses,” Medical Science Monitor, vol. 14, no. 2, pp. RA17–RA21, 2008.
[14]  World Health Organization, “Investing in mental health,” 2003, http://www.who.int/mental_health/en/investing_in_mnh_final.pdf.
[15]  National Institute of Mental Health (NIMH), Just Over Half of Americans Diagnosed with Major Depression Receive Care. Science Update, National Institute of Mental Health, National Institutes of Health, Bethesda, Md, USA, 2010.
[16]  R. Wilkinson and M. Maramot, Social Determinants of Health: The Solid Facts, U.S. Government Printing Office, Washington, DC, USA, 2003.
[17]  L. Pozuelo, G. Tesar, J. Zhang, M. Penn, K. Franco, and W. Jiang, “Depression and heart disease: what do we know, and where are we headed?” Cleveland Clinic Journal of Medicine, vol. 76, no. 1, pp. 59–70, 2009.
[18]  O. M. Wolkowitz, S. H. Mellon, E. S. Epel et al., “Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress—preliminary findings,” PLoS One, vol. 6, no. 3, Article ID e17837, 2011.
[19]  J. K. Kiecolt-Glaser and R. Glaser, “Depression and immune function central pathways to morbidity and mortality,” Journal of Psychosomatic Research, vol. 53, no. 4, pp. 873–876, 2002.
[20]  C. P. Fagundes, R. Glaser, B. S. Hwang, W. B. Malarkey, and J. K. Kiecolt-Glaser, “Depressive symptoms enhance stress-induced inflammatory responses,” Brain, Behavior, and Immunity, 2012.
[21]  J. Lin, E. Epel, and E. Blackburn, “Telomeres and lifestyle factors: roles in cellular aging,” Mutation Research, vol. 730, no. 1-2, pp. 85–89, 2012.
[22]  R. Dantzer, J. C. O'Connor, G. G. Freund, R. W. Johnson, and K. W. Kelley, “From inflammation to sickness and depression: when the immune system subjugates the brain,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 46–56, 2008.
[23]  J. K. Kiecolt-Glaser, L. McGuire, T. F. Robles, and R. Glaser, “Emotions, morbidity, and mortality: new perspectives from psychoneuroimmunology,” Annual Review of Psychology, vol. 53, pp. 83–107, 2002.
[24]  M. Akiyama, O. Yamada, T. Hideshima et al., “TNFα induces rapid activation and nuclear translocation of telomerase in human lymphocytes,” Biochemical and Biophysical Research Communications, vol. 316, no. 2, pp. 528–532, 2004.
[25]  M. Akiyama, T. Hideshima, T. Hayashi et al., “Cytokines modulate telomerase activity in a human multiple myeloma cell line,” Cancer Research, vol. 62, no. 13, pp. 3876–3882, 2002.
[26]  A. K. Damjanovic, Y. Yang, R. Glaser et al., “Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients,” Journal of Immunology, vol. 179, no. 6, pp. 4249–4254, 2007.
[27]  J. Choi, S. R. Fauce, and R. B. Effros, “Reduced telomerase activity in human T lymphocytes exposed to cortisol,” Brain, Behavior, and Immunity, vol. 22, no. 4, pp. 600–605, 2008.
[28]  E. S. Epel, J. Lin, F. S. Dhabhar et al., “Dynamics of telomerase activity in response to acute psychological stress,” Brain, Behavior, and Immunity, vol. 24, no. 4, pp. 531–539, 2010.
[29]  E. S. Epel, E. H. Blackburn, J. Lin et al., “Accelerated telomere shortening in response to life stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004.
[30]  B. Rawdin, S. H. Mellon, F. S. Dhabhar et al., “Dysregulated relationship of inflammation and oxidative stress in major depression,” Brain, Behavior, and Immunity, 2012.
[31]  J. Lin, E. Epel, J. Cheon et al., “Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance,” Journal of Immunological Methods, vol. 352, no. 1-2, pp. 71–80, 2010.
[32]  E. S. Epel, E. H. Blackburn, J. Lin et al., “Accelerated telomere shortening in response to life stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004.
[33]  D. Ornish, J. Lin, J. Daubenmier et al., “Increased telomerase activity and comprehensive lifestyle changes: a pilot study,” The Lancet Oncology, vol. 9, pp. 1048–1057, 2008.
[34]  C. G. Parks, D. B. Miller, E. C. McCanlies et al., “Telomere length, current perceived stress, and urinary stress hormones in women,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 2, pp. 551–560, 2009.
[35]  O. T. Njajou, W. C. Hsueh, E. H. Blackburn et al., “Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study,” Journals of Gerontology A, vol. 64, no. 8, pp. 860–864, 2009.
[36]  E. S. Epel, “Psychological and metabolic stress: a recipe for accelerated cellular aging?” Hormones, vol. 8, no. 1, pp. 7–22, 2009.
[37]  R. M. Cawthon, K. R. Smith, E. O'Brien, A. Sivatchenko, and R. A. Kerber, “Association between telomere length in blood and mortality in people aged 60 years or older,” The Lancet, vol. 361, no. 9355, pp. 393–395, 2003.
[38]  E. Blackburn, “Telomeres and tetrahymena: an interview with Elizabeth Blackburn,” DMM Disease Models and Mechanisms, vol. 2, no. 11-12, pp. 534–537, 2009.
[39]  R. Farzaneh-Far, J. Lin, E. Epel, K. Lapham, E. Blackburn, and M. A. Whooley, “Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study,” PLoS One, vol. 5, no. 1, Article ID e8612, 2010.
[40]  C. W. Hanna, K. L. Bretherick, J. L. Gair, M. R. Fluker, M. D. Stephenson, and W. P. Robinson, “Telomere length and reproductive aging,” Human Reproduction, vol. 24, no. 5, pp. 1206–1211, 2009.
[41]  C. B. Harley, “Telomerase therapeutics for degenerative diseases,” Current Molecular Medicine, vol. 5, no. 2, pp. 205–211, 2005.
[42]  S. C. Hunt, W. Chen, J. P. Gardner et al., “Leukocyte telomeres are longer in African Americans than in whites: the national heart, lung, and blood institute family heart study and the Bogalusa heart study,” Aging Cell, vol. 7, no. 4, pp. 451–458, 2008.
[43]  J. Huzen, P. van der Harst, R. A. de Boer et al., “Telomere length and psychological well-being in patients with chronic heart failure,” Age and Ageing, vol. 39, no. 2, Article ID afp256, pp. 223–227, 2010.
[44]  P. W. Hoen, P. de Jonge, B. Y. Na et al., “Depression and leukocyte telomere length in patients with coronary heart disease: data from the Heart and Soul Study,” Psychosomatic Medicine, vol. 73, pp. 541–547, 2011.
[45]  N. Hartmann, M. Boehner, F. Groenen, and R. Kalb, “Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease,” Depression and Anxiety, vol. 27, no. 12, pp. 1111–1116, 2010.
[46]  N. M. Simon, J. W. Smoller, K. L. McNamara et al., “Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging,” Biological Psychiatry, vol. 60, no. 5, pp. 432–435, 2006.
[47]  F. W. Lung, N. C. Chen, and B. C. Shu, “Genetic pathway of major depressive disorder in shortening telomeric length,” Psychiatric Genetics, vol. 17, no. 3, pp. 195–199, 2007.
[48]  S. Malan, S. Hemmings, M. Kidd, L. Martin, and S. Seedat, “Investigation of telomere length and psychological stress in rape victims,” Depression and Anxiety, vol. 28, no. 12, pp. 1081–1085, 2011.
[49]  O. M. Wolkowitz, S. H. Mellon, E. S. Epel et al., “Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response,” Molecular Psychiatry, vol. 17, pp. 164–172, 2012.
[50]  M. Wikgren, M. Maripuu, T. Karlsson et al., “Short telomeres in depression and the general population are associated with a hypocortisolemic state,” Biological Psychiatry, vol. 71, no. 4, pp. 294–300, 2012.
[51]  T. Elvsashagen, E. Vera, E. Boen et al., “The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder,” Journal of Affective Disorder, vol. 135, no. 1, pp. 43–50, 2011.
[52]  J. A. Shaffer, E. Epel, M. S. Kang et al., “Depressive symptoms are not associated with leukocyte Telomere length: findings from the Nova scotia health survey (NSHS95), a population-based study,” PLoS One, vol. 7, Article ID e48318, 2012.
[53]  P. W. Hoen, J. G. Rosmalen, R. A. Schoevers, J. Huzen, P. van der Harst, and P. de Jonge, “Association between anxiety but not depressive disorders and leukocyte telomere length after 2 years of follow-up in a population-based sample,” Psychological Medicine, no. 4, pp. 689–697, 2013.
[54]  L. H. Price, H. T. Kao, D. E. Burgers, L. L. Carpenter, and A. R. Tyrka, “Telomeres and early-life stress: an overview,” Biological Psychiatry, vol. 73, no. 1, pp. 15–23, 2013.
[55]  E. Epel, J. Daubenmier, J. T. Moskowitz, S. Folkman, and E. Blackburn, “Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres,” Annals of the New York Academy of Sciences, vol. 1172, pp. 34–53, 2009.
[56]  S. Kim, C. G. Parks, L. A. DeRoo et al., “Obesity and weight gain in adulthood and telomere length,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 3, pp. 816–820, 2009.
[57]  O. M. Wolkowitz, E. S. Epel, and S. Mellon, “When blue turns to grey: do stress and depression accelerate cell aging?” World Journal of Biological Psychiatry, vol. 9, no. 1, pp. 2–5, 2008.
[58]  A. O'Donovan, J. Lin, F. S. Dhabhar et al., “Pessimism correlates with leukocyte telomere shortness and elevated interleukin-6 in post-menopausal women,” Brain, Behavior, and Immunity, vol. 23, no. 4, pp. 446–449, 2009.
[59]  O. W. Wolkowitz, E. S. Epel, V. I. Reus, and S. H. Mellon, “Depression gets old fast: do stress and depression accelerate cell aging?” Depression and Anxiety, vol. 27, no. 4, pp. 327–338, 2010.
[60]  E. Epel, “How, “reversible” is telomeric aging?” Cancer Prevention Research, vol. 5, pp. 1163–1168, 2012.
[61]  H. Lavretsky, E. S. Epel, P. Siddarth et al., “A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: effects on mental health, cognition, and telomerase activity,” International Journal of Geriatric Psychiatry, vol. 28, no. 1, pp. 57–65, 2013.
[62]  J. Daubenmier, J. Lin, E. Blackburn et al., “Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study,” Psychoneuroendocrinology, vol. 37, no. 7, pp. 917–928, 2012.
[63]  P. Kinser, C. Bourguignon, D. Whaley, E. Hauenstein, and A. G. Taylor, “Feasibility, acceptability, and effects of a gentle Hatha yoga intervention for women with major depression: findings from a randomized controlled mixed-methods study,” Archives of Psychiatric Nursing. In press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133