Posttraumatic stress disorder (PTSD) develops in approximately one-quarter of trauma-exposed individuals, leading us and others to question the mechanisms underlying this heterogeneous response to trauma. We suggest that the reasons for the heterogeneity relate to a complex interaction between genes and the environment, shaping each individual’s recovery trajectory based on both historical and trauma-specific variables. Epigenetic modifications provide a unique opportunity to elucidate how preexisting risk factors may contribute to PTSD risk through changes in the methylation of DNA. Preexisting risks for PTSD, including depression, stress, and trauma, result in differential DNA methylation of endocrine genes, which may then result in a different biological responses to trauma and subsequently a greater risk for PTSD onset. Although these relationships are complex and currently inadequately described, we provide a critical review of recent studies to examine how differences in genetic and proteomic biomarkers shape an individual’s vulnerability to PTSD development, thereby contributing to a heterogeneous response to trauma. 1. Introduction Up to 90% of individuals experience a traumatic event at some time during their lives, yet most recover and suffer from no long-term ramifications; however, a subset of individuals develop posttraumatic stress disorder (PTSD) and are at high risk for health decline [1–4]. This heterogeneous response suggests that preexisting factors might influence how people respond to traumatic situations. We suggest that a more comprehensive examination of biomarkers that approximate PTSD risk would be of great value. Biomarker discovery in PTSD has been hindered by the lack of prospective studies in traumatized individuals, resulting in an insufficient understanding of the preexisting risk factors for PTSD onset as well as the mechanistic pathways that underlie this risk. Without this knowledge, we are unable to identify traumatized individuals at risk for PTSD development and, therefore, unable to implement effective, preventive interventions. Yet, additional biological analysis methods have become available, and these new strategies will be useful in addressing this critical issue. Specifically, the use of whole-genome gene expression and epigenetic modifications (DNA methylation) provide an opportunity to explore more than candidate biomarkers, to identify novel mechanisms related to PTSD risk, and to pinpoint genetic pathways that may be implicated in both risk and resilience to trauma. A traumatic event places individuals at
References
[1]
D. S. Davydow, W. J. Katon, and D. F. Zatzick, “Psychiatric morbidity and functional impairments in survivors of burns, traumatic injuries, and ICU stays for other critical illnesses: a review of the literature,” International Review of Psychiatry, vol. 21, no. 6, pp. 531–538, 2009.
[2]
D. Zatzick, “Posttraumatic stress, functional impairment, and service utilization after injury: a public health approach,” Seminars in Clinical Neuropsychiatry, vol. 8, no. 3, pp. 149–157, 2003.
[3]
J. A. Coplan, “Rotational motion of the knee: a comparison of normal and pronating subjects,” Journal of Orthopaedic and Sports Physical Therapy, vol. 10, no. 9, pp. 366–369, 1989.
[4]
D. F. Zatzick, D. C. Grossman, J. Russo et al., “Predicting posttraumatic stress symptoms longitudinally in a representative sample of hospitalized injured adolescents,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 45, no. 10, pp. 1188–1195, 2006.
[5]
R. Jaenisch and A. Bird, “Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals,” Nature Genetics, vol. 33, supplement, pp. 245–254, 2003.
[6]
N. Breslau, “Epidemiologic studies of trauma, posttraumatic stress disorder, and other psychiatric disorders,” Canadian Journal of Psychiatry, vol. 47, no. 10, pp. 923–929, 2002.
[7]
I. C. G. Weaver, N. Cervoni, F. A. Champagne et al., “Epigenetic programming by maternal behavior,” Nature Neuroscience, vol. 7, no. 8, pp. 847–854, 2004.
[8]
D. Liu, J. Diorio, B. Tannenbaum et al., “Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress,” Science, vol. 277, no. 5332, pp. 1659–1662, 1997.
[9]
M. M. Sanchez, “The impact of early adverse care on HPA axis development: nonhuman primate models,” Hormones and Behavior, vol. 50, no. 4, pp. 623–631, 2006.
[10]
F. Fumagalli, R. Molteni, G. Racagni, and M. A. Riva, “Stress during development: impact on neuroplasticity and relevance to psychopathology,” Progress in Neurobiology, vol. 81, no. 4, pp. 197–217, 2007.
[11]
P. O. McGowan, A. Sasaki, A. C. D'Alessio et al., “Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse,” Nature Neuroscience, vol. 12, no. 3, pp. 342–348, 2009.
[12]
T. F. Oberlander, J. Weinberg, M. Papsdorf, R. Grunau, S. Misri, and A. M. Devlin, “Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses,” Epigenetics, vol. 3, no. 2, pp. 97–106, 2008.
[13]
T. L. Roth, P. R. Zoladz, J. D. Sweatt, and D. M. Diamond, “Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder,” Journal of Psychiatric Research, vol. 45, no. 7, pp. 919–926, 2011.
[14]
K. Koshibu, J. Gr?ff, and I. M. Mansuy, “Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation,” Neuroscience, vol. 173, pp. 30–36, 2011.
[15]
F. Tian, A. M. Marini, and R. H. Lipsky, “Effects of histone deacetylase inhibitor Trichostatin A on epigenetic changes and transcriptional activation of Bdnf promoter 1 by rat hippocampal neurons,” Annals of the New York Academy of Sciences, vol. 1199, pp. 186–193, 2010.
[16]
E. Vanderbilt-Adriance and D. S. Shaw, “Neighborhood risk and the development of resilience,” Annals of the New York Academy of Sciences, vol. 1094, pp. 359–362, 2006.
[17]
E. Vanderbilt-Adriance and D. S. Shaw, “Conceptualizing and re-evaluating resilience across levels of risk, time, and domains of competence,” Clinical Child and Family Psychology Review, vol. 11, no. 1-2, pp. 30–58, 2008.
[18]
M. Uddin, A. E. Aiello, D. E. Wildman, et al., “Epigenetic and immune function profiles associated with posttraumatic stress disorder,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9470–9475, 2010.
[19]
K. J. Ressler, K. B. Mercer, B. Bradley et al., “Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor,” Nature, vol. 470, no. 7335, pp. 492–497, 2011.
[20]
J. Gill, D. Luckenbaugh, D. Charney, and M. Vythilingam, “Sustained elevation of serum interleukin-6 and relative insensitivity to hydrocortisone differentiates posttraumatic stress disorder with and without depression,” Biological Psychiatry, vol. 68, no. 11, pp. 999–1006, 2010.
[21]
C. S. de Kloet, E. Vermetten, A. R. Rademaker, E. Geuze, and H. G. M. Westenberg, “Neuroendocrine and immune responses to a cognitive stress challenge in veterans with and without PTSD,” European Journal of Psychotraumatology, vol. 2012, article 3, 2012.
[22]
K. C. Koenen, M. Uddin, S. C. Chang et al., “SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder,” Depression and Anxiety, vol. 28, no. 8, pp. 639–647, 2011.
[23]
A. K. Smith, K. N. Conneely, V. Kilaru et al., “Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder,” American Journal of Medical Genetics B, vol. 156, no. 6, pp. 700–708, 2011.
[24]
M. Uddin, S. Galea, S. C. Chang et al., “Gene expression and methylation signatures of MAN2C1 are associated with PTSD,” Disease Markers, vol. 30, no. 2-3, pp. 111–121, 2011.
[25]
J. A. Rusiecki, L. Chen, V. Srikantan et al., “DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members,” Epigenomics, vol. 4, no. 1, pp. 29–40, 2012.
[26]
J. Zieker, D. Zieker, A. Jatzko et al., “Differential gene expression in peripheral blood of patients suffering from post-traumatic stress disorder,” Molecular Psychiatry, vol. 12, no. 2, pp. 116–118, 2007.
[27]
R. Yehuda, G. Cai, J. A. Golier et al., “Gene expression patterns associated with posttraumatic stress disorder following exposure to the world trade center attacks,” Biological Psychiatry, vol. 66, no. 7, pp. 708–711, 2009.
[28]
T. C. Neylan, B. Sun, H. Rempel et al., “Suppressed monocyte gene expression profile in men versus women with PTSD,” Brain, Behavior, and Immunity, vol. 25, no. 3, pp. 524–531, 2011.
[29]
C. Sarapas, G. Cai, L. M. Bierer et al., “Genetic markers for PTSD risk and resilience among survivors of the world trade center attacks,” Disease Markers, vol. 30, no. 2-3, pp. 101–110, 2011.
[30]
D. Mehta, M. Gonik, T. Klengel et al., “Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies,” Archives of General Psychiatry, vol. 68, no. 9, pp. 901–910, 2011.
[31]
T. W. Pace, K. Wingenfeld, I. Schmidt, G. Meinlschmidt, D. H. Hellhammer, and C. M. Heim, “Increased peripheral NF- B pathway activity in women with childhood abuse-related posttraumatic stress disorder,” Brain, Behavior, and Immunity, vol. 26, no. 1, pp. 13–17, 2012.
[32]
M. van Zuiden, E. Geuze, H. L. Willemen et al., “Glucocorticoid receptor pathway components predict posttraumatic stress disorder symptom development: a prospective study,” Biological Psychiatry, vol. 71, no. 4, pp. 309–316, 2012.
[33]
M. van Zuiden, C. J. Heijnen, M. Maas et al., “Glucocorticoid sensitivity of leukocytes predicts PTSD, depressive and fatigue symptoms after military deployment: a prospective study,” Psychoneuroendocrinology, vol. 37, no. 11, pp. 1822–1836, 2012.
[34]
G. Mati?, D. V. Milutinovi?, J. Nestorov et al., “Lymphocyte glucocorticoid receptor expression level and hormone-binding properties differ between war trauma-exposed men with and without PTSD,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 43, pp. 238–245, 2013.
[35]
D. L. Delahanty, N. R. Nugent, N. C. Christopher, and M. Walsh, “Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims,” Psychoneuroendocrinology, vol. 30, no. 2, pp. 121–128, 2005.
[36]
S. A. Ostrowski, N. C. Christopher, M. H. M. Van Dulmen, and D. L. Delahanty, “Acute child and mother psychophysiological responses and subsequent PTSD symptoms following a child's traumatic event,” Journal of Traumatic Stress, vol. 20, no. 5, pp. 677–687, 2007.
[37]
P. Pervanidou, G. Kolaitis, S. Charitaki et al., “Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident,” Psychoneuroendocrinology, vol. 32, no. 8–10, pp. 991–999, 2007.
[38]
H. S. Resnick, R. Yehuda, R. K. Pitman, and D. W. Foy, “Effect of previous trauma on acute plasma cortisol level following rape,” The American Journal of Psychiatry, vol. 152, no. 11, pp. 1675–1677, 1995.
[39]
R. Yehuda, H. S. Resnick, J. Schmeidler, R. K. Yang, and R. K. Pitman, “Predictors of cortisol and 3-methoxy-4-hydroxyphenylglycol responses in the acute aftermath of rape,” Biological Psychiatry, vol. 43, no. 11, pp. 855–859, 1998.
[40]
D. L. Delahanty, A. J. Raimonde, and E. Spoonster, “Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims,” Biological Psychiatry, vol. 48, no. 9, pp. 940–947, 2000.
[41]
O. Bonne, D. Brandes, R. Segman, R. K. Pitman, R. Yehuda, and A. Y. Shalev, “Prospective evaluation of plasma cortisol in recent trauma survivors with posttraumatic stress disorder,” Psychiatry Research, vol. 119, no. 1-2, pp. 171–175, 2003.
[42]
M. Heinrichs, D. Wagner, W. Schoch, L. M. Soravia, D. H. Hellhammer, and U. Ehlert, “Predicting posttraumatic stress symptoms from pretraumatic risk factors: a 2-year prospective follow-up study in firefighters,” The American Journal of Psychiatry, vol. 162, no. 12, pp. 2276–2286, 2005.
[43]
A. C. McFarlane, M. Atchison, and R. Yehuda, “The acute stress response following motor vehicle accidents and its relation to PTSD,” Annals of the New York Academy of Sciences, vol. 821, pp. 437–441, 1997.
[44]
T. Ehring, A. Ehlers, A. J. Cleare, and E. Glucksman, “Do acute psychological and psychobiological responses to trauma predict subsequent symptom severities of PTSD and depression?” Psychiatry Research, vol. 161, no. 1, pp. 67–75, 2008.
[45]
A. Y. Shalev, E. J. Videlock, T. Peleg, R. Segman, R. K. Pitman, and R. Yehuda, “Stress hormones and post-traumatic stress disorder in civilian trauma victims: a longitudinal study—part I: HPA axis responses,” International Journal of Neuropsychopharmacology, vol. 11, no. 3, pp. 365–372, 2008.
[46]
E. J. Videlock, T. Peleg, R. Segman, R. Yehuda, R. K. Pitman, and A. Y. Shalev, “Stress hormones and post-traumatic stress disorder in civilian trauma victims: a longitudinal study—part II: the adrenergic response,” International Journal of Neuropsychopharmacology, vol. 11, no. 3, pp. 373–380, 2008.
[47]
M. Cohen, T. Meir, E. Klein, G. Volpin, M. Assaf, and S. Pollack, “Cytokine levels as potential biomarkers for predicting the development of posttraumatic stress symptoms in casualties of accidents,” International Journal of Psychiatry in Medicine, vol. 42, no. 2, pp. 117–131, 2011.
[48]
M. van Zuiden, E. Geuze, H. L. D. M. Willemen et al., “Pre-existing high glucocorticoid receptor number predicting development of posttraumatic stress symptoms after military deployment,” The American Journal of Psychiatry, vol. 168, no. 1, pp. 89–96, 2011.
[49]
D. Mehta and E. B. Binder, “Gene x environment vulnerability factors for PTSD: the HPA-axis,” Neuropharmacology, vol. 62, no. 2, pp. 654–662, 2012.
[50]
J. A. Boscarino, P. M. Erlich, S. N. Hoffman, M. Rukstalis, and W. F. Stewart, “Association of FKBP5, COMT and CHRNA5 polymorphisms with PTSD among outpatients at risk for PTSD,” Psychiatry Research, vol. 188, no. 1, pp. 173–174, 2011.
[51]
C. F. Gillespie, J. Phifer, B. Bradley, and K. J. Ressler, “Risk and resilience: genetic and environmental influences on development of the stress response,” Depression and Anxiety, vol. 26, no. 11, pp. 984–992, 2009.
[52]
A. B. Amstadter, N. R. Nugent, B. Z. Yang et al., “Corticotrophin-releasing hormone type 1 receptor gene (CRHR1) variants predict posttraumatic stress disorder onset and course in pediatric injury patients,” Disease Markers, vol. 30, no. 2-3, pp. 89–99, 2011.
[53]
S. L. Szanton and J. M. Gill, “Facilitating resilience using a society-to-cells framework: a theory of nursing essentials applied to research and practice,” Advances in Nursing Science, vol. 33, no. 4, pp. 329–343, 2010.
[54]
Y. Song, D. Zhou, Z. Guan, and X. Wang, “Disturbance of serum interleukin-2 and interleukin-8 levels in posttraumatic and non-posttraumatic stress disorder earthquake survivors in Northern China,” NeuroImmunoModulation, vol. 14, no. 5, pp. 248–254, 2007.
[55]
J. Gill, M. Vythilingam, and G. G. Page, “Low cortisol, high DHEA, and high levels of stimulated TNF-α, and IL-6 in women with PTSD,” Journal of Traumatic Stress, vol. 21, no. 6, pp. 530–539, 2008.
[56]
S. Bonaccorso, V. Marino, A. Puzella et al., “Increased depressive ratings in patients with hepatitis C receiving interferon-α-based immunotherapy are related to interferon-α-induced changes in the serotonergic system,” Journal of Clinical Psychopharmacology, vol. 22, no. 1, pp. 86–90, 2002.
[57]
G. A. Bonanno and A. D. Mancini, “The human capacity to thrive in the face of potential trauma,” Pediatrics, vol. 121, no. 2, pp. 369–375, 2008.
[58]
L. Capuron, J. F. Gumnick, D. L. Musselman et al., “Neurobehavioral effects of interferon-α in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions,” Neuropsychopharmacology, vol. 26, no. 5, pp. 643–652, 2002.
[59]
L. Capuron, G. Neurauter, D. L. Musselman et al., “Interferon-α-induced changes in tryptophan metabolism: relationship to depression and paroxetine treatment,” Biological Psychiatry, vol. 54, no. 9, pp. 906–914, 2003.
[60]
M. C. Wichers, G. Kenis, G. H. Koek, G. Robaeys, N. A. Nicolson, and M. Maes, “Interferon-α-induced depressive symptoms are related to changes in the cytokine network but not to cortisol,” Journal of Psychosomatic Research, vol. 62, no. 2, pp. 207–214, 2007.
[61]
T. H. Wu and C. H. Lin, “IL-6 mediated alterations on immobile behavior of rats in the forced swim test via ERK1/2 activation in specific brain regions,” Behavioural Brain Research, vol. 193, no. 2, pp. 183–191, 2008.
[62]
M. Maes, M. Kubera, and J. C. Leunis, “The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression,” Neuro endocrinology letters, vol. 29, no. 1, pp. 117–124, 2008.
[63]
S. J. Campbell, R. M. J. Deacon, Y. Jiang, C. Ferrari, F. J. Pitossi, and D. C. Anthony, “Overexpression of IL-1β by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour,” Neurobiology of Disease, vol. 27, no. 2, pp. 151–163, 2007.
[64]
A. Pierucci-Lagha, J. Covault, H. L. Bonkovsky et al., “A functional serotonin transporter gene polymorphism and depressive effects associated with interferon-α treatment,” Psychosomatics, vol. 51, no. 2, pp. 137–148, 2010.
[65]
S. Su, J. Zhao, J. D. Bremner et al., “Serotonin transporter gene, depressive symptoms,and interleukin-6,” Circulation: Cardiovascular Genetics, vol. 2, no. 6, pp. 614–620, 2009.
[66]
A. Sch?fer, M. Scheurlen, J. Seufert et al., “Platelet serotonin (5-HT) levels in interferon-treated patients with hepatitis C and its possible association with interferon-induced depression,” Journal of Hepatology, vol. 52, no. 1, pp. 10–15, 2010.
[67]
M. C. Wichers, G. H. Koek, G. Robaeys, R. Verkerk, S. Scharpé, and M. Maes, “IDO and interferon-α-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity,” Molecular Psychiatry, vol. 10, no. 6, pp. 538–544, 2005.
[68]
J. T. J?rvel?, S. Ruohonen, T. K. Kukko-Lukjanov, A. Plysjuk, F. R. Lopez-Picon, and I. E. Holopainen, “Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death,” Neuropharmacology, vol. 60, no. 7-8, pp. 1116–1125, 2011.
[69]
J. T. Yu, C. H. Lee, K. Y. Yoo et al., “Maintenance of anti-inflammatory cytokines and reduction of glial activation in the ischemic hippocampal CA1 region preconditioned with lipopolysaccharide,” Journal of the Neurological Sciences, vol. 296, no. 1-2, pp. 69–78, 2010.
[70]
C. D. Munhoz, B. García-Bueno, J. L. Madrigal, L. B. Lepsch, C. Scavone, and J. C. Leza, “Stress-induced neuroinflammation: mechanisms and new pharmacological targets,” Brazilian Journal of Medical and Biological Research, vol. 41, no. 12, pp. 1037–1046, 2008.
[71]
R. A. Bryant, J. E. Marosszeky, J. Crooks, and J. A. Gurka, “Elevated resting heart rate as a predictor of posttraumatic stress disorder after severe traumatic brain injury,” Psychosomatic Medicine, vol. 66, no. 5, pp. 760–761, 2004.
[72]
R. A. Bryant, A. G. Harvey, R. M. Guthrie, and M. L. Moulds, “A prospective study of psychophysiological arousal, acute stress disorder, and posttraumatic stress disorder,” Journal of Abnormal Psychology, vol. 109, no. 2, pp. 341–344, 2000.
[73]
J. H. Krystal and A. Neumeister, “Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience,” Brain Research, vol. 1293, pp. 13–23, 2009.
[74]
E. A. Walker, W. Katon, J. Russo, P. Ciechanowski, E. Newman, and A. W. Wagner, “Health care costs associated with posttraumatic stress disorder symptoms in women,” Archives of General Psychiatry, vol. 60, no. 4, pp. 369–374, 2003.
[75]
M. D. Marciniak, M. J. Lage, E. Dunayevich et al., “The cost of treating anxiety: the medical and demographic correlates that impact total medical costs,” Depression and Anxiety, vol. 21, no. 4, pp. 178–184, 2005.
[76]
S. Priebe, J. J. Gavrilovic, A. Matanov et al., “Treatment outcomes and costs at specialized centers for the treatment of PTSD after the war in former Yugoslavia,” Psychiatric Services, vol. 61, no. 6, pp. 598–604, 2010.
[77]
M. L. O'Donnell, M. Creamer, P. Elliott, and C. Atkin, “Health costs following motor vehicle accidents: the role of posttraumatic stress disorder,” Journal of Traumatic Stress, vol. 18, no. 5, pp. 557–561, 2005.
[78]
R. Kimerling, J. Alvarez, J. Pavao, K. P. MacK, M. W. Smith, and N. Baumrind, “Unemployment among women: examining the relationship of physical and psychological intimate partner violence and posttraumatic stress disorder,” Journal of Interpersonal Violence, vol. 24, no. 3, pp. 450–463, 2009.
[79]
A. Nandi, S. Galea, M. Tracy et al., “Job loss, unemployment, work stress, job satisfaction, and the persistence of posttraumatic stress disorder one year after the september 11 attacks,” Journal of Occupational and Environmental Medicine, vol. 46, no. 10, pp. 1057–1064, 2004.
[80]
H. C. Wilcox, C. L. Storr, and N. Breslau, “Posttraumatic stress disorder and suicide attempts in a community sample of urban American young adults,” Archives of General Psychiatry, vol. 66, no. 3, pp. 305–311, 2009.
[81]
D. J. Stein, W. T. Chiu, I. Hwang et al., “Cross-national analysis of the associations between traumatic events and suicidal behavior: findings from the WHO world mental health surveys,” PloS ONE, vol. 5, no. 5, Article ID e10574, 2010.
[82]
J. L. Gradus, P. Qin, A. K. Lincoln et al., “Posttraumatic stress disorder and completed suicide,” The American Journal of Epidemiology, vol. 171, no. 6, pp. 721–727, 2010.
[83]
J. R. Cougle, H. Resnick, and D. G. Kilpatrick, “PTSD, depression, and their comorbidity in relation to suicidality: cross-sectional and prospective analyses of a national probability sample of women,” Depression and Anxiety, vol. 26, no. 12, pp. 1151–1157, 2009.
[84]
S. B. Vyrostek, J. L. Annest, and G. W. Ryan, “Surveillance for fatal and nonfatal injuries—United States, 2001,” Morbidity and Mortality Weekly Report: Surveillance Summaries, vol. 53, no. 7, pp. 1–57, 2004.
[85]
D. Zatzick, G. J. Jurkovich, F. P. Rivara et al., “A national US study of posttraumatic stress disorder, depression, and work and functional outcomes after hospitalization for traumatic injury,” Annals of Surgery, vol. 248, no. 3, pp. 429–437, 2008.
[86]
N. Breslau, “Trauma and mental health in US inner-city populations,” General Hospital Psychiatry, vol. 31, no. 6, pp. 501–502, 2009.
[87]
D. Zatzick, J. Russo, D. C. Grossman et al., “Posttraumatic stress and depressive symptoms, alcohol use, and recurrent traumatic life events in a representative sample of hospitalized injured adolescents and their parents,” Journal of Pediatric Psychology, vol. 31, no. 4, pp. 377–387, 2006.