Introduction. Nurses often experience work-related stress. High stress can negatively affect job satisfaction and lead to emotional exhaustion with risk of burnout. Aim. To analyse possible differences in biological stress markers, psychosocial working conditions, health, and well-being between nurses working in two different departments. Methods. Stress was evaluated in nurses working in a neonatal intensive care unit (NICU) ( ) and nurses working in a child and adolescent psychiatry inpatient ward (CAP) ( ) using salivary cortisol and HbA1c. Salivary cortisol was measured three times a day on two consecutive days during two one-week periods, seven weeks apart (=?12 samples/person). Psychosocial working conditions, health, and well-being were measured once. Results. NICU nurses had better social support and more self-determination. CAP nurses had a lower salivary cortisol quotient, poorer general health, and higher client-related burnout scores. Conclusion. When comparing these nurses with existing norm data for Sweden, as a group their scores reflect less work-related stress than Swedes overall. However, the comparison between NICU and CAP nurses indicates a less healthy work situation for CAP nurses. Relevance to Clinical Practice. Healthcare managers need to acknowledge the less healthy work situation CAP nurses experience in order to provide optimal support and promote good health. 1. Introduction Compared with outpatient nursing, perceived stress is higher among nurses working in internal medicine, intensive care, accident and emergency wards, and in paediatrics [1]. Neonatal intensive care unit (NICU) nurses are an example of a nursing discipline commonly exposed to high work-related stress [2–4]. Nurses working with psychiatrically ill children and adolescents are exposed to emotional strain, although of a somewhat different nature than the strain faced by nurses working with life-threatening conditions, as in the NICU. Some studies confirm this finding [5–7], but we could not find any studies specifically addressing differences in stress between NICU nurses and nurses involved in inpatient child and adolescent psychiatric care. The stress system coordinates the generalised stress response, which can be defined as the physiological response to environmental demands placed upon the individual [8]. Activation of the stress system initiates behavioural and peripheral changes in order to improve homeostasis. Cortisol modulates the stress response by acting on the hypothalamus to inhibit continued release of corticotropin-releasing hormone (CRH) [9].
References
[1]
V. J. C. McCarthy, S. Power, and B. A. Greiner, “Perceived occupational stress in nurses working in Ireland,” Occupational Medicine, vol. 60, no. 8, pp. 604–610, 2010.
[2]
R. K. Oates and P. Oates, “Stress and mental health in neonatal intensive care units,” Archives of Disease in Childhood, vol. 72, no. 2, pp. F107–F110, 1995.
[3]
V. Downey, M. Bengiamin, L. Heuer, and N. Juhl, “Dying babies and associated stress in NICU nurses,” Neonatal Network, vol. 14, no. 1, pp. 41–46, 1995.
[4]
M. Braithwaite, “Nurse burnout and stress in the NICU,” Advances in Neonatal Care, vol. 8, no. 6, pp. 343–347, 2008.
[5]
J. E. Fischer, A. Calame, A. C. Dettling, H. Zeier, and S. Fanconi, “Experience and endocrine stress responses in neonatal and pediatric critical care nurses and physicians,” Critical Care Medicine, vol. 28, no. 9, pp. 3281–3288, 2000.
[6]
Y. Yang, D. Koh, V. Ng et al., “Salivary cortisol levels and work-related stress among emergency department nurses,” Journal of Occupational and Environmental Medicine, vol. 43, no. 12, pp. 1011–1018, 2001.
[7]
R. R. Looser, P. Metzenthin, S. Helfricht et al., “Cortisol is significantly correlated with cardiovascular responses during high levels of stress in critical care personnel,” Psychosomatic Medicine, vol. 72, no. 3, pp. 281–289, 2010.
[8]
H. Selye, “Stress and the general adaptation syndrome,” British medical journal, vol. 1, no. 4667, pp. 1383–1392, 1950.
[9]
G. P. Chrousos and P. W. Gold, “The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis,” Journal of the American Medical Association, vol. 267, no. 9, pp. 1244–1252, 1992.
[10]
B. S. McEwen and T. Seeman, “Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load,” Annals of the New York Academy of Sciences, vol. 896, pp. 30–47, 1999.
[11]
A. Dahlgren, G. Kecklund, and T. ?kerstedt, “Different levels of work-related stress and the effects on sleep, fatigue and cortisol,” Scandinavian Journal of Work, Environment and Health, vol. 31, no. 4, pp. 277–285, 2005.
[12]
R. J. Benschop, J. F. Brosschot, G. L. R. Godaert et al., “Chronic stress affects immunologic but not cardiovascular responsiveness to acute psychological stress in humans,” American Journal of Physiology, vol. 266, no. 1, part 2, pp. R75–R80, 1994.
[13]
M. Kristenson, Z. Kucinskien?, B. Bergdahl, H. Calkauskas, V. Urmonas, and K. Orth-Gomér, “Increased psychosocial strain in Lithuanian versus Swedish men: the LiVicordia study,” Psychosomatic Medicine, vol. 60, no. 3, pp. 277–282, 1998.
[14]
M. Frankenhaueser, Kvinnligt, Manligt, Stressigt, Brombergs, H?gan?s, Sweden, 1997.
[15]
T. Chandola, A. Heraclides, and M. Kumari, “Psychophysiological biomarkers of workplace stressors,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 1, pp. 51–57, 2010.
[16]
?. M. Hansen, A. D. Larsen, R. Rugulies, A. H. Garde, and L. E. Knudsen, “A review of the effect of the psychosocial working environment on physiological changes in blood and urine,” Basic and Clinical Pharmacology and Toxicology, vol. 105, no. 2, pp. 73–83, 2009.
[17]
J. S. Ruggiero, “Health, work variables, and job satisfaction among nurses,” Journal of Nursing Administration, vol. 35, no. 5, pp. 254–263, 2005.
[18]
M. Gillespie and V. Melby, “Burnout among nursing staff in accident and emergency and acute medicine: a comparative study,” Journal of Clinical Nursing, vol. 12, no. 6, pp. 842–851, 2003.
[19]
R. Jenkins and P. Elliott, “Stressors, burnout and social support: nurses in acute mental health settings,” Journal of Advanced Nursing, vol. 48, no. 6, pp. 622–631, 2004.
[20]
M.-C. Yeh and S. Yu, “Job stress and intention to quit in newly-graduated nurses during the first three months of work in Taiwan,” Journal of Clinical Nursing, vol. 18, no. 24, pp. 3450–3460, 2009.
[21]
H.-Y. Hsu, S.-H. Chen, H.-Y. Yu, and J.-H. Lou, “Job stress, achievement motivation and occupational burnout among male nurses,” Journal of Advanced Nursing, vol. 66, no. 7, pp. 1592–1601, 2010.
[22]
A. Harris, H. Ursin, R. Murison, and H. R. Eriksen, “Coffee, stress and cortisol in nursing staff,” Psychoneuroendocrinology, vol. 32, no. 4, pp. 322–330, 2007.
[23]
K. Wingenfeld, M. Schulz, A. Damkroeger, M. Rose, and M. Driessen, “Elevated diurnal salivary cortisol in nurses is associated with burnout but not with vital exhaustion,” Psychoneuroendocrinology, vol. 34, no. 8, pp. 1144–1151, 2009.
[24]
J. K. Sluiter, A. J. van der Beek, and M. H. Frings-Dresen, “Medical staff in emergency situations: severity of patient status predicts stress hormone reactivity and recovery,” Occupational and Environmental Medicine, vol. 60, no. 5, pp. 373–375, 2003.
[25]
C. Fujimaru, H. Okamura, M. Kawasaki, T. Kakuma, C. Yoshii, and T. Matsuishi, “Self-perceived work-related stress and its relation to salivary IgA, cortisol and 3-methoxy-4-hydroxyphenyl glycol levels among neonatal intensive care nurses,” Stress and Health, vol. 28, no. 2, pp. 171–174, 2012.
[26]
I. W?hlin, A.-C. Ek, and E. Idvall, “Staff empowerment in intensive care: nurses' and physicians' lived experiences,” Intensive and Critical Care Nursing, vol. 26, no. 5, pp. 262–269, 2010.
[27]
I. R. Hallberg, “Systematic clinical supervision in a child psychiatric ward: satisfaction with nursing care, tedium, burnout, and the nurses' own report on the effects of it,” Archives of Psychiatric Nursing, vol. 8, no. 1, pp. 44–52, 1994.
[28]
E. Eriksson and A. Nordlund, “H?lsa och h?lsorelaterad livskvalitet m?tt med EQ-5D och SF-36 i ?sterg?tlands och Kalmar l?n: resultat fr?n befolkningsenk?terna,” Tech. Rep. 2002:12002, Folkh?lsovetenskapligt Centrum, Link?ping, Sweden, 2002.
[29]
E. Aardal-Eriksson, B. E. Karlberg, and A.-C. Holm, “Salivary cortisol—an alternative to serum cortisol determinations in dynamic function tests,” Clinical Chemistry and Laboratory Medicine, vol. 36, no. 4, pp. 215–222, 1998.
[30]
V. K. Tsenkova, D. Carr, D. A. Schoeller, and C. D. Ryff, “Perceived weight discrimination amplifies the link between central adiposity and nondiabetic glycemic control (HbA1c),” Annals of Behavioral Medicine, vol. 41, no. 2, pp. 243–251, 2011.
[31]
N. Kawakami, K. Akachi, H. Shimizu et al., “Job strain, social support in the workplace, and haemoglobin A1c in Japanese men,” Occupational Environmental Medicine, vol. 57, no. 12, pp. 805–809, 2000.
[32]
R. A. Karasek, “Job demands, job decision latitude, and mental strain: implications for job redesign,” Administrative Science Quarterly, vol. 24, pp. 285–308, 1979.
[33]
R. G. Karasek, G. Pietrokovsky, C. Frese et al., Job Content Questionnaire: Questionnaire and Users' Guide, University of Massachusetts, Lowell, Mass, USA, 1985.
[34]
B. Sanne, A. Mykletun, A. A. Dahl, B. E. Moen, and G. S. Tell, “Testing the job demand-control-support model with anxiety and depression as outcomes: the Hordaland health study,” Occupational Medicine, vol. 55, no. 6, pp. 463–473, 2005.
[35]
G. M. Spreitzer, “An empirical test of a comprehensive model of intrapersonal empowerment in the workplace,” American Journal of Community Psychology, vol. 23, no. 5, pp. 601–629, 1995.
[36]
H. Arneson and K. Ekberg, “Measuring empowerment in working life: a review,” Work, vol. 26, no. 1, pp. 37–46, 2006.
[37]
T. S. Kristensen, M. Borritz, E. Villadsen, and K. B. Christensen, “The Copenhagen Burnout inventory: a new tool for the assessment of burnout,” Work and Stress, vol. 19, no. 3, pp. 192–207, 2005.
[38]
M. Borritz, R. Rugulies, K. B. Christensen, E. Villadsen, and T. S. Kristensen, “Burnout as a predictor of self-reported sickness absence among human service workers: prospective findings from three year follow up of the PUMA study,” Occupational and Environmental Medicine, vol. 63, no. 2, pp. 98–106, 2006.
[39]
I. McDowell, Measuring Health: A Guide To Rating Scales and Questionnaires, Oxford University Press, New York, NY, USA, 3rd edition, 2006.
[40]
M. Sullivan, J. Karlsson, and J. E. Ware Jr., “The Swedish SF-36 health survey—I. Evaluation of data quality, scaling assumptions, reliability and construct validity across general populations in Sweden,” Social Science and Medicine, vol. 41, no. 10, pp. 1349–1358, 1995.
[41]
L. Sj?berg, E. Svensson, and L. O. Persson, “The measurement of mood,” Scandinavian Journal of Psychology, vol. 20, no. 1, pp. 1–18, 1979.
[42]
L. Levi, “Work, stress and health,” Scandinavian Journal of Work, Environment and Health, vol. 10, no. 6, pp. 495–500, 1984.
[43]
E. W. Pines, M. L. Rauschhuber, G. H. Norgan et al., “Stress resiliency, psychological empowerment and conflict management styles among baccalaureate nursing students,” Journal of Advanced Nursing, vol. 68, no. 7, pp. 1482–1493, 2012.
[44]
J. A. Korkeila, S. T?yry, K. Kumpulainen, J.-M. Toivola, K. R?s?nen, and R. Kalimo, “Burnout and self-perceived health among Finnish psychiatrists and child psychiatrists: a national survey,” Scandinavian Journal of Public Health, vol. 31, no. 2, pp. 85–91, 2003.
[45]
T. J. Currid, “The lived experience and meaning of stress in acute mental health nurses,” British Journal of Nursing, vol. 17, no. 14, pp. 880–884, 2008.
[46]
T. Currid, “Experiences of stress among nurses in acute mental health settings,” Nursing Standard, vol. 23, no. 44, pp. 40–46, 2009.
[47]
G. Greisen, N. Mirante, D. Haumont et al., “Parents, siblings and grandparents in the Neonatal Intensive Care Unit A survey of policies in eight European countries,” Acta Paediatrica, International Journal of Paediatrics, vol. 98, no. 11, pp. 1744–1750, 2009.
[48]
S. A. Vreeburg, B. P. Kruijtzer, J. van Pelt et al., “Associations between sociodemographic, sampling and health factors and various salivary cortisol indicators in a large sample without psychopathology,” Psychoneuroendocrinology, vol. 34, no. 8, pp. 1109–1120, 2009.
[49]
I. Federenko, S. Wüst, D. H. Hellhammer, R. Dechoux, R. Kumsta, and C. Kirschbaum, “Free cortisol awakening responses are influenced by awakening time,” Psychoneuroendocrinology, vol. 29, no. 2, pp. 174–184, 2004.
[50]
S. Edwards, P. Evans, F. Hucklebridge, and A. Clow, “Association between time of awakening and diurnal cortisol secretory activity,” Psychoneuroendocrinology, vol. 26, no. 6, pp. 613–622, 2001.