Cancer immunotherapy is a promising and effective treatment modality for patients with cancers. Cytokine, anticytokine, and antibody therapies appear to be effective in treating various forms of cancer. The human papillomavirus vaccine is protective for cervical cancer, and this discovery has paved the way to the development of cancer vaccines for other forms of virus-associated cancers such as liver cancer and Merkel cell carcinoma. Clinical trials have demonstrated that adoptive cell therapy using tumor-infiltrating lymphocytes can induce tumor regression in approximately 75% of metastatic melanoma patients, suggesting the possibility of using similar technique to effectively treat breast, lung, and renal cancers in the near future. Besides, genetically engineered T cells transduced with genes encoding specific T cell receptors and chimeric antigen receptors have been shown effective in the treatment of cancer patients. These studies suggest that combination therapies are superior choices in cancer immunotherapy for patients. 1. Introduction Cancer develops when abnormal cells grow uncontrollably and spread in human body. Different from normal cells, cancer cells have two unique characteristics, that is, uncontrolled growth and metastasis. Recent studies have shown that cancer cells have eight hallmarks, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction [1]. Usually, gene mutations induced by intrinsic factors and/or exogenous factors result in the production and growth of cancer cells. It has been estimated that new cases of cancer are 1.66 million and deaths from cancer are 0.58 million in the United States in 2013 [2]. It is expected that there will be 20–30 million new cases of cancer and 13–17 million people will die from caner all over the world by 2030 [3]. At present, cancer is the most serious health problem worldwide [4]. Cancer treatment is still a challenging task to both scientists and clinicians. Currently, cancer is usually treated with surgery [5, 6], radiation [7, 8], chemotherapy [9, 10], hormone therapy [11], biological therapy [12, 13], and targeted therapies [14–16]. However, no method available presently for cancer treatment is satisfactory [17]. With the advancement in immunological science and related disciplines, immunotherapy is becoming a new promising method for cancer treatment [18–21]. In this paper, the history,
References
[1]
D. Hanahan and R. A. Weinberg, “Hallmarks of Cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.
[2]
A. C. Society, Cancer Facts and Figures 2013, American Cancer Society, Atlanta, Ga, USA, 2013.
[3]
R. S. . Katikireddi and S. N. R. S. Setty, “The incidence of common Cancers in south indian region—a hospital based cross sectional study—research article,” International Journal of Current Research and Review, vol. 5, p. 37, 2013.
[4]
A. Rosta, “Diabetes and risk of tumors: oncologic considerations,” Orvosi Hetilap, vol. 152, no. 29, pp. 1144–1155, 2011.
[5]
A. Recht and M. J. Houlihan, “Conservative surgery without radiotherapy in the treatment of patients with early-stage invasive breast Cancer: a review,” Annals of Surgery, vol. 222, no. 1, pp. 9–18, 1995.
[6]
G. Lezoche, et al., “Treatment of rectal Cancer by transanal endoscopic microsurgery: review of the literature,” Minerva Chirurgica, vol. 68, p. 1, 2013.
[7]
C. M. Mansfield, L. Krishnan, L. T. Komarnicky, K. M. Ayyangar, and C. A. Kramer, “A review of the role of radiation therapy in the treatment of patients with breast Cancer,” Seminars in Oncology, vol. 18, no. 6, pp. 525–535, 1991.
[8]
A. Munshi, J. P. Agarwal, and K. C. Pandey, “Cancer patients with cardiac pacemakers needing radiation treatment: a systematic review,” Journal of Cancer Research and Therapeutics, vol. 9, p. 193, 2013.
[9]
M. Johnson, “Chemotherapy treatment decision making by professionals and older patients with Cancer: a narrative review of the literature,” European Journal of Cancer Care, vol. 21, no. 1, pp. 3–9, 2012.
[10]
J. Goffin, C. Lacchetti, P. M. Ellis, Y. C. Ung, and W. K. Evans, “First-line systemic chemotherapy in the treatment of advanced non-small cell lung Cancer: a systematic review,” Journal of Thoracic Oncology, vol. 5, no. 2, pp. 260–274, 2010.
[11]
D. Prezioso, G. Piccirillo, R. Galasso, V. Altieri, V. Mirone, and T. Lotti, “Gynecomastia due to hormone therapy for advanced prostate Cancer: a report of ten surgically treated cases and a review of treatment options,” Tumori, vol. 90, no. 4, pp. 410–415, 2004.
[12]
A. M. Manganoni, C. Zane, L. Pavoni, C. Farisoglio, E. Sereni, and P. Calzavara-Pinton, “Cutaneous melanoma in patients in treatment with biological therapy: review of the literature and case report,” Dermatology Online Journal, vol. 17, no. 8, p. 12, 2011.
[13]
J. M. Balwit, P. Kalinski, V. K. Sondak et al., “Review of the 25th annual scientific meeting of the International Society for Biological Therapy of Cancer,” Journal of Translational Medicine, vol. 9, p. 60, 2011.
[14]
M. Kudo, “Targeted therapy for liver Cancer: updated review in 2012,” Current Cancer Drug Targets, vol. 12, p. 1062, 2012.
[15]
C. Coppin, C. Kollmannsberger, L. Le, F. Porzsolt, and T. J. Wilt, “Targeted therapy for advanced renal cell Cancer (RCC): a Cochrane systematic review of published randomised trials,” BJU International, vol. 108, no. 10, pp. 1556–1563, 2011.
[16]
G. A. Silvestri and M. P. Rivera, “Targeted therapy for the treatment of advanced non-small cell lung Cancer: a review of the epidermal growth factor receptor antagonists,” Chest, vol. 128, no. 6, pp. 3975–3984, 2005.
[17]
A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA: Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008.
[18]
D. Lutz, “Immunotherapy of Cancer: a critical review,” International Journal of Clinical Pharmacology Therapy and Toxicology, vol. 21, no. 3, pp. 118–129, 1983.
[19]
S. A. Rosenberg, “Clinical immunotherapy studies in the Surgery Branch of the U.S. National Cancer Institute: brief review,” Cancer Treatment Reviews, vol. 16, pp. 115–121, 1989.
[20]
A. I. Riker, S. Radfar, S. Liu, Y. Wang, and H. T. Khong, “Immunotherapy of melanoma: a critical review of current concepts and future strategies,” Expert Opinion on Biological Therapy, vol. 7, no. 3, pp. 345–358, 2007.
[21]
R. D. Hall, J. E. Gray, and A. A. Chiappori, “Beyond the standard of care: a review of novel immunotherapy trials for the treatment of lung Cancer,” Cancer Control, vol. 20, p. 22, 2013.
[22]
E. Farber, “The multistep nature of Cancer development,” Cancer Research, vol. 44, no. 10, pp. 4217–4223, 1984.
[23]
S. Sukumar, “An experimental analysis of Cancer: role of ras oncogenes in multistep carcinogenesis,” Cancer Cells, vol. 2, no. 7, pp. 199–204, 1990.
[24]
A. Karakosta, C. Golias, A. Charalabopoulos, D. Peschos, A. Batistatou, and K. Charalabopoulos, “Genetic models of human Cancer as a multistep process. Paradigm models of colorectal Cancer, breast Cancer, and chronic myelogenous and acute lymphoblastic leukaemia,” Journal of Experimental and Clinical Cancer Research, vol. 24, no. 4, pp. 505–514, 2005.
[25]
H. Ballentine Carter, S. Piantadosi, and J. T. Isaacs, “Clinical evidence for and implications of the multistep development of prostate Cancer,” Journal of Urology, vol. 143, no. 4, pp. 742–746, 1990.
[26]
P. C. Nowell, “The clonal evolution of tumor cell populations. Acquired genetic lability permits stepwise selection of variant sublines and underlies tumor progression,” Science, vol. 194, no. 4260, pp. 23–28, 1976.
[27]
M. Greaves and C. C. Maley, “Clonal evolution in Cancer,” Nature, vol. 481, no. 7381, pp. 306–313, 2012.
[28]
M. Jan and R. Majeti, “Clonal evolution of acute leukemia genomes,” Oncogene, vol. 32, p. 135, 2012.
[29]
B. Parkin, et al., “Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia,” Blood, vol. 121, p. 369, 2013.
[30]
M. Castellarin, K. Milne, T. Zeng, et al., “Clonal evolution of high-grade serous ovarian carcinoma from primary to recurrent disease,” The Journal of Pathology, vol. 229, p. 515, 2013.
[31]
H. Clevers, “The Cancer stem cell: premises, promises and challenges,” Nature Medicine, vol. 17, no. 3, pp. 313–319, 2011.
[32]
P. S. Rudland, E. J. Ormerod, and F. C. Paterson, “Stem cells in rat mammary development and Cancer: a review,” Journal of the Royal Society of Medicine, vol. 73, no. 6, pp. 437–442, 1980.
[33]
P. Selby, J. P. Bizzari, and R. N. Buick, “Therapeutic implications of a stem cell model for human breast Cancer: a hypothesis,” Cancer Treatment Reports, vol. 67, no. 7-8, pp. 659–663, 1983.
[34]
D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997.
[35]
P. B. Dirks, “Brain tumor stem cells: the Cancer stem cell hypothesis writ large,” Molecular Oncology, vol. 4, no. 5, pp. 420–430, 2010.
[36]
D. H. Kumar and M. K. Kutty, “Review of stem cell deregulation and breast Cancer: an emerging hypothesis,” Indian Journal of Pathology & Microbiology, vol. 55, p. 147, 2012.
[37]
S. Susman, C. Tomuleasa, O. Soritau, et al., “The colorectal Cancer stem-like cell hypothesis: a pathologist's point of view,” Journal of the Balkan Union of Oncology, vol. 17, p. 230, 2012.
[38]
M. Rahman, L. Deleyrolle, V. Vedam-Mai, H. Azari, M. Abd-El-Barr, and B. A. Reynolds, “The Cancer stem cell hypothesis: failures and pitfalls,” Neurosurgery, vol. 68, no. 2, pp. 531–545, 2011.
[39]
J. D. O'Flaherty, M. Barr, D. Fennell, et al., “The Cancer stem-cell hypothesis: its emerging role in lung Cancer biology and its relevance for future therapy,” Journal of Thoracic Oncology, vol. 7, p. 1880, 2012.
[40]
C. Samardzija, M. Quinn, J. K. Findlay, and N. Ahmed, “Attributes of Oct4 in stem cell biology: perspectives on Cancer stem cells of the ovary,” Journal of Ovarian Research, vol. 5, p. 37, 2012.
[41]
N. J. Maitland and A. Collins, “A tumour stem cell hypothesis for the origins of prostate Cancer,” BJU International, vol. 96, no. 9, pp. 1219–1223, 2005.
[42]
A. Rocco, D. Compare, and G. Nardone, “Cancer stem cell hypothesis and gastric carcinogenesis: experimental evidence and unsolved questions,” World Journal of Gastrointestinal Oncology, vol. 4, p. 54, 2012.
[43]
A. Morotti, C. Panuzzo, C. Fava, and G. Saglio, “Kinase-inhibitor-insensitive Cancer stem cells in chronic myeloid leukemia,” Expert Opinion on Biological Therapy, vol. 14, no. 3, pp. 287–299, 2014.
[44]
O. Shakhova and L. Sommer, “Testing the Cancer stem cell hypothesis in melanoma: the clinics will tell,” Cancer Letters, vol. 338, p. 74, 2013.
[45]
M. A. Gonzalez-Moles, C. Scully, I. Ruiz-Avila, and J. J. Plaza-Campillo, “The Cancer stem cell hypothesis applied to oral carcinoma,” Oral Oncology, vol. 49, p. 738, 2013.
[46]
D. Lilic, “Immune response to infection,” Anaesthesia and Intensive Care Medicine, vol. 10, no. 5, pp. 218–220, 2009.
[47]
R. Doll and L. Kinlen, “Immunosurveillance and Cancer: epidemiological evidence,” British Medical Journal, vol. 4, no. 732, pp. 420–422, 1970.
[48]
G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, “Cancer immunoediting: from immunosurveillance to tumor escape,” Nature Immunology, vol. 3, no. 11, pp. 991–998, 2002.
[49]
J. Galon, H. K. Angell, D. Bedognetti, and F. M. Marincola, “The continuum of Cancer immunosurveillance: prognostic, predictive, and mechanistic signatures,” Immunity, vol. 39, p. 11, 2013.
[50]
C. Y. Slaney, J. Rautela, and B. S. Parker, “The emerging role of immunosurveillance in dictating metastatic spread in Breast Cancer,” Cancer Research, vol. 73, p. 5852, 2013.
[51]
B. Lakshmi Narendra, K. Eshvendar Reddy, S. Shantikumar, and S. Ramakrishna, “Immune system: a double-edged sword in Cancer,” Inflammation Research, vol. 62, p. 823, 2013.
[52]
V. C. Goswitz and Z. P. Sawicki, “Cancer therapy based on a mechanism of action for controlling the immune system and the resulting patent portfolio,” Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, vol. 7, p. 1, 2013.
[53]
Y. Liu and G. Zeng, “Cancer and innate immune system interactions: translational potentials for Cancer immunotherapy,” Journal of Immunotherapy, vol. 35, no. 4, pp. 299–308, 2012.
[54]
S. Rangwala and K. Y. Tsai, “Roles of the immune system in skin Cancer,” British Journal of Dermatology, vol. 165, no. 5, pp. 953–965, 2011.
[55]
P. Hwu, “Treating Cancer by targeting the immune system,” The New England Journal of Medicine, vol. 363, no. 8, pp. 779–781, 2010.
[56]
A. Hama?, H. Benlalam, F. Meslin et al., “Immune surveillance of human Cancer: if the cytotoxic T-lymphocytes play the music, does the tumoral system call the tune?” Tissue Antigens, vol. 75, no. 1, pp. 1–8, 2010.
[57]
L. Von Boehmer, A. Draenert, W. Jungraithmayr et al., “Immunosuppression and lung Cancer of donor origin after bilateral lung transplantation,” Lung Cancer, vol. 76, no. 1, pp. 118–122, 2012.
[58]
P. A. Dugue, M. Rebolj, P. Garred, and E. Lynge, “Immunosuppression and risk of cervical Cancer,” Expert Review of AntiCancer Therapy, vol. 13, p. 29, 2013.
[59]
A. B. Frey and N. Monu, “Effector-phase tolerance: another mechanism of how Cancer escapes antitumor immune response,” Journal of Leukocyte Biology, vol. 79, no. 4, pp. 652–662, 2006.
[60]
S. Feyler, P. J. Selby, and G. Cook, “Regulating the regulators in Cancer-immunosuppression in multiple myeloma (MM),” Blood Reviews, vol. 27, p. 155, 2013.
[61]
M. Terme, et al., “Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells,” Cancer Research, vol. 72, p. 2757, 2012.
[62]
M. Terme, E. Ullrich, L. Aymeric, et al., “IL-18 induces PD-1-dependent immunosuppression in Cancer,” Cancer Research, vol. 71, p. 5393, 2011.
[63]
J. Cheng, L. Li, Y. Liu, Z. Wang, X. Zhu, and X. Bai, “Interleukin-1alpha induces immunosuppression by mesenchymal stem cells promoting the growth of prostate Cancer cells,” Molecular Medicine Reports, vol. 6, p. 955, 2012.
[64]
J. F. Navarro-González and C. Mora-Fernández, “The role of inflammatory cytokines in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 19, no. 3, pp. 433–442, 2008.
[65]
J. H. Lee, H. Torisu-Itakura, A. J. Cochran et al., “Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes,” Clinical Cancer Research, vol. 11, no. 1, pp. 107–112, 2005.
[66]
D. Lutz, “Interferon-alpha therapy in chronic myeloid leukemia,” Wien Med Wochenschr, vol. 143, p. 416, 1993.
[67]
K. V. Bogdanov, O. I. Frolova, O. V. Marinetz, Y. S. Ogorodnikova, B. V. Afanasiev, and A. Y. Zaritsky, “The efficacy of interferon-α therapy in Ph-positive chronic myeloid leukemia,” Voprosy Onkologii, vol. 49, no. 2, pp. 189–192, 2003.
[68]
P. Von Wussow, B. Block, F. Hartmann, and H. Deicher, “Intralesional interferon-alpha therapy in advanced malignant melanoma,” Cancer, vol. 61, no. 6, pp. 1071–1074, 1988.
[69]
S. Mocellin, S. Pasquali, C. R. Rossi, and D. Nitti, “Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis,” Journal of the National Cancer Institute, vol. 102, no. 7, pp. 493–501, 2010.
[70]
E. Minutilli and C. Feliciani, “Adjuvant therapy for resected stage III melanoma patients: high-dose interferon-alpha versus ipilimumab combined with kinases inhibitors,” Tumori, vol. 98, p. 185, 2012.
[71]
P. Liu, C. Zhang, J. Chen et al., “Combinational therapy of interferon-α and chemotherapy normalizes tumor vasculature by regulating pericytes including the novel marker rgs5 in melanoma,” Journal of Immunotherapy, vol. 34, no. 3, pp. 320–326, 2011.
[72]
R. E. Royal, S. M. Steinberg, R. S. Krouse et al., “Correlates of response to IL-2 therapy in patients treated for metastatic renal Cancer and melanoma,” Cancer Journal from Scientific American, vol. 2, no. 2, pp. 91–98, 1996.
[73]
E. G. Elias, J. L. Zapas, S. L. Beam, and S. D. Brown, “GM-CSF and IL-2 combination as adjuvant therapy in cutaneous melanoma: early results of a phase II clinical trial,” Oncology, vol. 19, no. 4, pp. 15–18, 2005.
[74]
S. Fateh, T. D. Schell, R. Gingrich, R. I. Neves, and J. J. Drabick, “Unsuccessful high dose IL-2 therapy followed immediately by near continuous low dose temozolomide can result in rapid durable complete and near-complete remissions in metastatic melanoma,” Cancer Biology and Therapy, vol. 10, no. 11, pp. 1091–1097, 2010.
[75]
K. Haranaka, “Tumor necrosis factor: how to improve the antitumor activity and decrease accompanying side effects for therapeutic application,” Journal of Biological Response Modifiers, vol. 7, no. 6, pp. 525–534, 1988.
[76]
R. S. Sidhu and A. P. Bollon, “Tumor necrosis factor activities and Cancer therapy—a perspective,” Pharmacology and Therapeutics, vol. 57, no. 1, pp. 79–128, 1993.
[77]
S. Mocellin, C. R. Rossi, P. Pilati, and D. Nitti, “Tumor necrosis factor, Cancer and antiCancer therapy,” Cytokine and Growth Factor Reviews, vol. 16, no. 1, pp. 35–53, 2005.
[78]
G. Kouklakis, E. I. Efremidou, M. Pitiakoudis, N. Liratzopoulos, and A. Polychronidis, “Development of primary malignant melanoma during treatment with a TNF-alpha antagonist for severe Crohn's disease: a case report and review of the hypothetical association between TNF-alpha blockers and Cancer,” Drug Design, Development and Therapy, vol. 7, p. 195, 2013.
[79]
P. Sorkin, S. Abu-Abid, D. Lev et al., “Systemic leakage and side effects of tumor necrosis factor α administered via isolated limb perfusion can be manipulated by flow rate adjustment,” Archives of Surgery, vol. 130, no. 10, pp. 1079–1084, 1995.
[80]
W. Cai, Z. J. Kerner, H. Hong, and J. Sun, “Targeted Cancer therapy with tumor necrosis factor-Alpha,” Biochem Insights, vol. 15, 2008.
[81]
I. M. Borrello, H. I. Levitsky, W. Stock et al., “Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML),” Blood, vol. 114, no. 9, pp. 1736–1745, 2009.
[82]
E. G. Elias, J. L. Zapas, E. C. McCarron, S. L. Beam, J. H. Hasskamp, and W. J. Culpepper, “Sequential administration of GM-CSF (sargramostim) and IL-2 ± autologous vaccine as adjuvant therapy in cutaneous melanoma: an interim report of a phase II clinical trial,” Cancer Biotherapy and Radiopharmaceuticals, vol. 23, no. 3, pp. 285–291, 2008.
[83]
H. Kim, W. Gao, and M. Ho, “Novel immunocytokine IL12-SS1 (Fv) inhibits mesothelioma tumor growth in nude mice,” PloS One, vol. 8, Article ID e81919, 2013.
[84]
T. Hemmerle and D. Neri, “The antibody-based targeted delivery of interleukin-4 and 12 to the tumor neovasculature eradicates tumors in three mouse models of Cancer,” International Journal of Cancer. Journal International Du Cancer, 2013.
[85]
K. Wang, S. I. Grivennikov, and M. Karin, “Implications of anti-cytokine therapy in colorectal Cancer and autoimmune diseases,” Annals of the Rheumatic Diseases, vol. 72, supplement 2, p. ii100, 2013.
[86]
S. Nishina, K. Yoshida, and K. Nakagawa, “Mechanisms of antibody-based therapy against solid tumors,” Japanese Journal of Clinical Medicine, vol. 70, p. 2093, 2012.
[87]
E. Vegt, M. D. Jong, J. F. M. Wetzels et al., “Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention,” Journal of Nuclear Medicine, vol. 51, no. 7, pp. 1049–1058, 2010.
[88]
Q. Lai, et al., “Multimodal treatment for acute antibody-mediated renal transplant rejection: successful rescue therapy with combined plasmapheresis, photopheresis and intravenous immunoglobulin,” Giornale Italiano Di Nefrologia, vol. 29, supplement 54, p. S31, 2012.
[89]
S. Panowksi, S. Bhakta, H. Raab, P. Polakis, and J. R. Junutula, “Site-specific antibody drug conjugates for Cancer therapy,” MAbs, vol. 6, p. 34, 2014.
[90]
C. R. Garrett and C. Eng, “Cetuximab in the treatment of patients with colorectal Cancer,” Expert Opinion on Biological Therapy, vol. 11, no. 7, pp. 937–949, 2011.
[91]
R. Islam, P. H. Chyou, and J. K. Burmester, “Modeling efficacy of bevacizumab treatment for metastatic colon Cancer,” Journal of Cancer, vol. 4, p. 330, 2013.
[92]
K. J. Williams and A. C. Lockhart, “Targeting colorectal Cancer with anti-epidermal growth factor receptor antibodies: focus on panitumumab,” OncoTargets and Therapy, vol. 2, p. 161, 2009.
[93]
E. J. Lipson, W. H. Sharfman, C. G. Drake, et al., “Durable Cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody,” Clinical Cancer Research, vol. 19, p. 462, 2013.
[94]
C. J. Langer, “Targeted therapy in head and neck Cancer: state of the art 2007 and review of clinical applications,” Cancer, vol. 112, no. 12, pp. 2635–2645, 2008.
[95]
C. Clément-Duchêne and H. Wakelee, “Antiangiogenic agents and vascular disrupting agents for the treatment of lung Cancer: a review,” Journal of Thoracic Oncology, vol. 5, no. 1, pp. 129–139, 2010.
[96]
C. Zielinski, S. Knapp, C. Mascaux, and F. Hirsch, “Rationale for targeting the immune system through checkpoint molecule blockade in the treatment of non-small-cell lung Cancer,” Annals of Oncology, vol. 24, p. 1170, 2013.
[97]
S. L. Topalian, F. S. Hodi, J. R. Brahmer, et al., “Safety, activity, and immune correlates of anti-PD-1 antibody in Cancer,” The New England Journal of Medicine, vol. 366, p. 2443, 2012.
[98]
J. R. Brahmer, S. S. Tykodi, L. Q. M. Chow, et al., “Safety and activity of anti-PD-L1 antibody in patients with advanced Cancer,” The New England Journal of Medicine, vol. 366, p. 2455, 2012.
[99]
E. Oosterwijk, O. C. Boerman, W. J. C. Oyen, L. J. Old, and P. F. A. Mulders, “Antibody therapy in renal cell carcinoma,” World Journal of Urology, vol. 26, no. 2, pp. 141–146, 2008.
[100]
A. M. M. Eggermont, A. Testori, M. Maio, and C. Robert, “AntiCTLA-4 antibody adjuvant therapy in melanoma,” Seminars in Oncology, vol. 37, no. 5, pp. 455–459, 2010.
[101]
G. G. Steger, J. Abrahámová, F. Bacanu et al., “Current standards in the treatment of metastatic breast Cancer with focus on Lapatinib: a review by a Central European Consensus Panel,” Wiener Klinische Wochenschrift, vol. 122, no. 11-12, pp. 368–379, 2010.
[102]
K. P. Garnock-Jones, G. M. Keating, and L. J. Scott, “Trastuzumab: a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast Cancer,” Drugs, vol. 70, p. 215, 2010.
[103]
P. Z. Teo, P. J. Utz, and J. A. Mollick, “Using the allergic immune system to target Cancer: activity of IgE antibodies specific for human CD20 and MUC1,” Cancer Immunology and Immunotherapy, vol. 61, p. 2295, 2012.
[104]
D. M. Goldenberg and R. M. Sharkey, “Radioactive antibodies: a historical review of selective targeting and treatment of Cancer,” Hospital Practice, vol. 38, p. 82, 1995.
[105]
E. L. Sievers and P. D. Senter, “Antibody-drug conjugates in Cancer therapy,” Annual Review of Medicine, vol. 64, p. 15, 2013.
[106]
T. List and D. Neri, “Immunocytokines: a review of molecules in clinical development for Cancer therapy,” Clinical Pharmacology, vol. 5, p. 29, 2013.
[107]
E. Ortiz-Sánchez, G. Helguera, T. R. Daniels, and M. L. Penichet, “Antibody-cytokine fusion proteins: applications in Cancer therapy,” Expert Opinion on Biological Therapy, vol. 8, no. 7, p. 1037, 2008.
[108]
P. Fournier and V. Schirrmacher, “Bispecific antibodies and trispecific immunocytokines for targeting the immune system against Cancer: preparing for the future,” BioDrugs, vol. 27, p. 35, 2013.
[109]
F. McAleese and M. Eser, “RECRUIT-TandAbs: harnessing the immune system to kill Cancer cells,” Future Oncology, vol. 8, p. 687, 2012.
[110]
G. Gonzalez, T. Crombet, and A. Lage, “Chronic vaccination with a therapeutic egf-based Cancer vaccine: a review of patients receiving long lasting treatment,” Current Cancer Drug Targets, vol. 11, no. 1, pp. 103–110, 2011.
[111]
E. J. Crosbie and H. C. Kitchener, “Cervarix—a bivalent L1 virus-like particle vaccine for prevention of human papillomavirus type 16- and 18-associated cervical Cancer,” Expert Opinion on Biological Therapy, vol. 7, no. 3, pp. 391–396, 2007.
[112]
E. Hanna and G. Bachmann, “HPV vaccination with Gardasil: a breakthrough in women's health,” Expert Opinion on Biological Therapy, vol. 6, no. 11, pp. 1223–1227, 2006.
[113]
M. A. Cheever and C. S. Higano, “PROVENGE (sipuleucel-T) in prostate Cancer: the first FDA-approved therapeutic Cancer vaccine,” Clinical Cancer Research, vol. 17, no. 11, pp. 3520–3526, 2011.
[114]
E.-K. Vetsika, G. Konsolakis, D. Aggouraki et al., “Immunological responses in Cancer patients after vaccination with the therapeutic telomerase-specific vaccine Vx-001,” Cancer Immunology, Immunotherapy, vol. 61, no. 2, pp. 157–168, 2012.
[115]
T. Y. Liu, W. M. Hussein, Z. Jia, et al., “Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical Cancer,” Biomacromolecules, vol. 14, p. 2798, 2013.
[116]
C. Grossardt, C. E. Engeland, S. Bossow, et al., “Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic Cancer vaccine,” Human Gene Therapy, vol. 24, p. 644, 2013.
[117]
X. Zhang, X. Shi, J. Li et al., “A novel therapeutic vaccine of mouse GM-CSF surface modified MB49 cells against metastatic bladder Cancer,” Journal of Urology, vol. 187, no. 3, pp. 1071–1079, 2012.
[118]
W. Yin, Q. He, Z. Hu, et al., “A novel therapeutic of GM-CSF/TNFalpha surface-modified RM-1 cells against the orthotopic prostatic Cancer,” Vaccine, vol. 28, no. 31, pp. 4937–4944, 2010.
[119]
M. Noguchi, T. Sasada, and K. Itoh, “Personalized peptide vaccination: a new approach for advanced Cancer as therapeutic Cancer vaccine,” Cancer Immunology and Immunotherapy, vol. 62, p. 919, 2013.
[120]
R. Hannan, H. Zhang, A. Wallecha, et al., “Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate Cancer,” Cancer Immunology and Immunotherapy, vol. 61, p. 2227, 2012.
[121]
Y. Li, et al., “Prospects in adoptive cell transfer therapy for Cancer,” Journal of Immunology and Clinical Research, vol. 1, p. 1008, 2013.
[122]
S. A. Rosenberg and M. E. Dudley, “Adoptive cell therapy for the treatment of patients with metastatic melanoma,” Current Opinion in Immunology, vol. 21, no. 2, pp. 233–240, 2009.
[123]
M. E. Dudley, J. C. Yang, R. Sherry et al., “Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens,” Journal of Clinical Oncology, vol. 26, no. 32, pp. 5233–5239, 2008.
[124]
A. A. Rayner, E. A. Grimm, and M. T. Lotze, “Lymphokine-activated killer (LAK) cells. Analysis of factors relevant to the immunotherapy of human Cancer,” Cancer, vol. 55, no. 6, pp. 1327–1333, 1985.
[125]
D. Khayat, M. Weil, C. Soubrane, and C. Jacquillat, “LAK cells and Cancer immunotherapy,” Bulletin du Cancer, vol. 75, no. 1, pp. 3–7, 1988.
[126]
A. Belldegrun, I. Uppenkamp, and S. A. Rosenberg, “Anti-tumor reactivity of human lymphokine activated killer (LAK) cells against fresh and cultured preparations of renal cell Cancer,” Journal of Urology, vol. 139, no. 1, pp. 150–155, 1988.
[127]
H. Deng, “Anti-human lung giant cell Cancer (PG) effect of human LAK cells in vitro and in nude mice,” Chinese Journal of Oncology, vol. 12, no. 4, pp. 258–260, 1990.
[128]
M. Sacchi, D. Vitolo, P. Sedlmayr et al., “Induction of tumor regression in experimental model of human head and neck Cancer by human A-LAK cells and IL-2,” International Journal of Cancer, vol. 47, no. 5, pp. 784–791, 1991.
[129]
H. Takahashi, T. Nakada, and I. Puisieux, “Inhibition of human colon Cancer growth by antibody-directed human LAK cells in SCID mice,” Science, vol. 259, no. 5100, pp. 1460–1463, 1993.
[130]
S. Teraoka, S. Kyoizumi, T. Suzuki, M. Yamakido, and M. Akiyama, “Growth suppressive efficacy of human LAK cells against human lung Cancer implanted into SCID mice,” International Journal of Oncology, vol. 6, no. 6, pp. 1271–1277, 1995.
[131]
I. G. H. Schmidt-Wolf, R. S. Negrin, H.-P. Kiem, K. G. Blume, and I. L. Weissman, “Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity,” Journal of Experimental Medicine, vol. 174, no. 1, pp. 139–149, 1991.
[132]
F.-S. Wang, M.-X. Liu, B. Zhang et al., “Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo,” World Journal of Gastroenterology, vol. 8, no. 3, pp. 464–468, 2002.
[133]
J. Liu, J. Sui, Z. Zhang et al., “Inhibition of pleural metastasis of collecting duct carcinoma of the kidney by modified cytokine-induced killer cells: a case report and review of the literature,” Oncology Letters, vol. 1, no. 6, pp. 955–958, 2010.
[134]
W. Li, L. P. Xu, L. D. Zhao, et al., “Cytokine-induced killer cell therapy for advanced pancreatic adenocarcinoma: a case report and review of the literature,” Oncology Letters, vol. 5, p. 1427, 2013.
[135]
Y. Ma, Z. Zhang, L. Tang et al., “Cytokine-induced killer cells in the treatment of patients with solid carcinomas: a systematic review and pooled analysis,” Cytotherapy, vol. 14, no. 4, pp. 483–493, 2012.
[136]
C. Hontscha, Y. Borck, H. Zhou, D. Messmer, and I. G. H. Schmidt-Wolf, “Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC),” Journal of Cancer Research and Clinical Oncology, vol. 137, no. 2, pp. 305–310, 2011.
[137]
S. Shi, R. Wang, Y. Chen, H. Song, L. Chen, and G. Huang, “Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung Cancer models,” PloS One, vol. 8, Article ID e65757, 2013.
[138]
A. M?rten, S. Renoth, M. Von Lilienfeld-Toal et al., “Enhanced lytic activity of cytokine-induced killer cells against multiple myeloma cells after co-culture with idiotype-pulsed dendritic cells,” Haematologica, vol. 86, no. 10, pp. 1029–1037, 2001.
[139]
H.-H. Zhu, K.-L. Xu, X.-Y. Pan, J.-Q. Liu, F.-X. Chen, and Y.-H. Huang, “Specific anti-leukemic cell effect mediated by dendritic cells pulsed with chronic myelogenous leukemia lysate antigen in vitro,” Journal of Experimental Hematology, vol. 11, no. 3, pp. 278–281, 2003.
[140]
A. Wongkajornsilp, S. Sangsuriyong, S. Hongeng, S. Waikakul, A. Asavamongkolkul, and S. Huabprasert, “Effective osteosarcoma cytolysis using cytokine-induced killer cells pre-inoculated with tumor RNA-pulsed dendritic cells,” Journal of Orthopaedic Research, vol. 23, no. 6, pp. 1460–1466, 2005.
[141]
W. Ge, C.-H. Li, W. Zhang et al., “Coculture of dendritic cell with cytokine-induced killer results in a significant increase in cytotoxic activity of CIK to tumor cells in vitro and in vivo,” Zhonghua xue ye xue za zhi, vol. 25, no. 5, pp. 277–280, 2004.
[142]
X.-J. Yang, J.-A. Huang, W. Lei, Y.-B. Zhu, and X.-G. Zhang, “Antitumor effects of cocultured dendritic cells and cytokine-induced killer cells on lung Cancer in vitro and in vivo,” Chinese Journal of Cancer, vol. 25, no. 11, pp. 1329–1333, 2006.
[143]
S. B. Shi, T. H. Ma, C. H. Li, and X. Y. Tang, “Effect of maintenance therapy with dendritic cells: cytokine-induced killer cells in patients with advanced non-small cell lung Cancer,” Tumori, vol. 98, p. 314, 2012.
[144]
Y. Yuanying, N. Lizhia, M. Feng, et al., “Therapeutic outcomes of combining cryotherapy, chemotherapy and DC-CIK immunotherapy in the treatment of metastatic non-small cell lung Cancer,” Cryobiology, vol. 67, p. 235, 2013.
[145]
J. Ren, et al., “Selections of appropriate regimen of high-dose chemotherapy combined with adoptive cellular therapy with dendritic and cytokine-induced killer cells improved progression-free and overall survival in patients with metastatic breast Cancer: reargument of such contentious therapeutic preferences,” Clinical and Translational Oncology, vol. 15, p. 780, 2013.
[146]
Q.-C. Liu, W.-H. Wu, and G.-R. Li, “Effect of lingdankang composite combined dendritic cell-cytokine induced killer cells in treating leukemia,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 29, no. 4, pp. 347–350, 2009.
[147]
Y. Liao, J. Ou, J. Deng, et al., “Clinical implications of the tumor-infiltrating lymphocyte subsets in colorectal Cancer,” Medical Oncology, vol. 30, p. 727, 2013.
[148]
L. L. Perry, T. N. Wight, W. M. Collins, and W. R. Dunlop, “Differentiation of progressive versus regressive Rous virus-induced avian sarcomas according to tumor and infiltrating lymphocyte fine structure,” Poultry science, vol. 57, no. 1, pp. 80–84, 1978.
[149]
T. Igarashi, H. Takahashi, T. Tobe et al., “Effect of tumor-infiltrating lymphocyte subsets on prognosis and susceptibility to interferon therapy in patients with renal cell carcinoma,” Urologia Internationalis, vol. 69, no. 1, pp. 51–56, 2002.
[150]
S. A. Rosenberg, P. Spiess, and R. Lafreniere, “A new approach to the adoptive immunotherapy of Cancer with tumor-infiltrating lymphocytes,” Science, vol. 233, no. 4770, pp. 1318–1321, 1986.
[151]
M. E. Dudley, J. R. Wunderlich, T. E. Shelton, J. Even, and S. A. Rosenberg, “Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients,” Journal of Immunotherapy, vol. 26, no. 4, pp. 332–342, 2003.
[152]
S. L. Goff, F. O. Smith, J. A. Klapper et al., “Tumor infiltrating lymphocyte therapy for metastatic melanoma: analysis of tumors resected for TIL,” Journal of Immunotherapy, vol. 33, no. 8, pp. 840–847, 2010.
[153]
J. H. Finke, P. Rayman, L. Hart et al., “Characterization of tumor-infiltrating lymphocyte subsets from human renal cell carcinoma: specific reactivity defined by cytotoxicity, interferon-γ secretion, and proliferation,” Journal of Immunotherapy, vol. 15, no. 2, pp. 91–104, 1994.
[154]
Y. Chin, J. Janssens, J. Bleus, C. Vandevijver, J. Zhang, and J. Raus, “T cell receptor Vβ usage of tumor infiltrating lymphocyte lines cloned from human breast tumor and melanoma,” International Journal of Oncology, vol. 7, no. 1, pp. 147–153, 1995.
[155]
H. Yang, J. Li, Y. Zhao, and Z. Li, “Interaction of tumor-infiltrating lymphocyte from oral squamous cell carcinoma with FN enhances its adhesion and cytotoxicity,” The Chinese Journal of Dental Research, vol. 2, no. 3-4, pp. 49–53, 1999.
[156]
R. S. Freedman, B. Tomasovic, S. Templin et al., “Large-scale expansion in interleukin-2 of tumor-infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy,” Journal of Immunological Methods, vol. 167, no. 1-2, pp. 145–160, 1994.
[157]
J. Zhou, M. E. Dudley, S. A. Rosenberg, and P. F. Robbins, “Selective growth, in vitro and in vivo, of individual T cell clones from tumor-infiltrating lymphocytes obtained from patients with melanoma,” Journal of Immunology, vol. 173, no. 12, pp. 7622–7629, 2004.
[158]
J. Zhou, M. E. Dudley, S. A. Rosenberg, and P. F. Robbins, “Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy,” Journal of Immunotherapy, vol. 28, no. 1, pp. 53–62, 2005.
[159]
J. Zhou, X. Shen, J. Huang, R. J. Hodes, S. A. Rosenberg, and P. F. Robbins, “Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy,” Journal of Immunology, vol. 175, no. 10, pp. 7046–7052, 2005.
[160]
K. Q. Tran, J. Zhou, K. H. Durflinger et al., “Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy,” Journal of Immunotherapy, vol. 31, no. 8, pp. 742–751, 2008.
[161]
G. B. Ratto, P. Zino, S. Mirabelli, et al., “A randomized trial of adoptive immunotherapy with tumor-infiltrating lymphocytes and interleukin-2 versus standard therapy in the postoperative treatment of resected nonsmall cell lung carcinoma,” Cancer, vol. 78, p. 244, 1996.
[162]
S. Turcotte, A. Gros, K. Hogan, et al., “Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal Cancers and melanoma: implications for adoptive cell transfer therapy,” The Journal of Immunology, vol. 191, p. 2217, 2013.
[163]
R. A. Morgan, M. E. Dudley, Y. Y. L. Yu et al., “High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens,” Journal of Immunology, vol. 171, no. 6, pp. 3287–3295, 2003.
[164]
R. A. Morgan, L. A. Johnson, J. L. Davis, et al., “Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma,” Human Gene Therapy, vol. 23, p. 1043, 2012.
[165]
L. A. Johnson, R. A. Morgan, M. E. Dudley et al., “Gene therapy with human and mouse T-cell receptors mediates Cancer regression and targets normal tissues expressing cognate antigen,” Blood, vol. 114, no. 3, pp. 535–546, 2009.
[166]
P. F. Robbins, R. A. Morgan, S. A. Feldman et al., “Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1,” Journal of Clinical Oncology, vol. 29, no. 7, pp. 917–924, 2011.
[167]
H. Abken, P. Koehler, P. Schmidt, A. A. Hombach, and M. Hallek, “Engineered T cells for the adoptive therapy of b-cell chronic lymphocytic leukaemia,” Advances in Hematology, vol. 2012, Article ID 595060, 13 pages, 2012.
[168]
M. L. Davila, C. C. Kloss, G. Gunset, and M. Sadelain, “CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia,” PloS One, vol. 8, Article ID e61338, 2013.
[169]
S. Gill and D. L. Porter, “CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road,” Expert Opinion on Biological Therapy, vol. 14, no. 1, pp. 37–49, 2014.
[170]
Y. Chang and P. S. Moore, “Merkel cell carcinoma: a virus-induced human Cancer,” Annual Review of Pathology: Mechanisms of Disease, vol. 7, pp. 123–144, 2012.
[171]
S. Bhatia, O. Afanasiev, and P. Nghiem, “Immunobiology of Merkel cell carcinoma: implications for immunotherapy of a polyomavirus-associated Cancer,” Current Oncology Reports, vol. 13, no. 6, pp. 488–497, 2011.
[172]
H. Sihto and H. Joensuu, “Tumor-infiltrating lymphocytes and outcome in Merkel cell carcinoma, a virus-associated Cancer,” Oncoimmunology, vol. 1, p. 1420, 2012.
[173]
C. X. Zhang, Y. P. Lu, and Z. Y. Yu, “Hepatitis C virus RNA in tumor tissues of Chinese liver Cancer patients,” Zhonghua yi xue za zhi, vol. 74, no. 11, pp. 673–709, 1994.
[174]
M. Ringelhan, M. Heikenwalder, and U. Protzer, “Direct effects of hepatitis B virus-encoded proteins and chronic infection in liver Cancer development,” Digestive Diseases, vol. 31, p. 138, 2013.
[175]
T. R. Coelho, L. Almeida, and P. A. Lazo, “JC virus in the pathogenesis of colorectal Cancer, an etiological agent or another component in a multistep process?” Virology Journal, vol. 7, article no. 42, 2010.
[176]
X. Mou, L. Chen, F. Liu, et al., “Prevalence of JC virus in Chinese patients with colorectal Cancer,” PloS One, vol. 7, Article ID e35900, 2012.
[177]
A. Vilkin, Z. Ronen, Z. Levi, S. Morgenstern, M. Halpern, and Y. Niv, “Presence of JC virus DNA in the tumor tissue and normal mucosa of patients with sporadic colorectal Cancer (CRC) or with positive family history and Bethesda criteria,” Digestive Diseases and Sciences, vol. 57, no. 1, pp. 79–84, 2012.
[178]
A. Merlo, R. Turrini, R. Dolcetti et al., “The interplay between Epstein-Barr virus and the immune system: a rationale for adoptive cell therapy of EBV-related disorders,” Haematologica, vol. 95, no. 10, pp. 1769–1777, 2010.
[179]
J. Duraiswamy, M. Sherritt, S. Thomson et al., “Therapeutic LMP1 polyepitope vaccine for EBV-associated Hodgkin disease and nasopharyngeal carcinoma,” Blood, vol. 101, no. 8, pp. 3150–3156, 2003.
[180]
J. I. Cohen, A. S. Fauci, H. Varmus, and G. J. Nabel, “Epstein-Barr virus: an important vaccine target for Cancer prevention,” Science Translational Medicine, vol. 3, no. 107, Article ID 107fs7, 2011.
[181]
L. Goodman, “EBV conference establishes goals for defining disease-related EBV subtypes for vaccine development,” Chinese Journal of Cancer, vol. 28, no. 12, pp. 1233–1235, 2009.
[182]
J. A. Kanakry and R. F. Ambinder, “EBV-related lymphomas: new approaches to treatment,” Current Treatment Options in Oncology, vol. 14, p. 224, 2013.
[183]
R. C. Gallo, “Research and discovery of the first human Cancer virus, HTLV-1,” Best Practice and Research: Clinical Haematology, vol. 24, no. 4, pp. 559–565, 2011.
[184]
M. P. Lynch and P. T. P. Kaumaya, “Advances in HTLV-1 peptide vaccines and therapeutics,” Current Protein and Peptide Science, vol. 7, no. 2, pp. 137–145, 2006.
[185]
K. Tezuka, R. Xun, M. Tei, et al., “An animal model of adult T-cell leukemia-humanized mice with HTLV-1 specific immunity,” Blood, vol. 123, no. 3, pp. 346–355, 2014.
[186]
D. Zhao, P. Chen, H. Yang, et al., “Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung Cancer,” Oncology Reports, vol. 29, p. 199, 2013.
[187]
F. Yang and X.-F. Yang, “New concepts in tumor antigens: their significance in future immunotherapies for tumors,” Cellular & molecular immunology, vol. 2, no. 5, pp. 331–341, 2005.
[188]
N. Phougat, N. Phougat, S. Khatri, A. Singh, et al., “Combination Therapy: the propitious rationale for drug development,” Combinatorial Chemistry & High Throughput Screening, vol. 17, no. 1, pp. 53–67, 2014.
[189]
S. Baek, C.-S. Kim, S.-B. Kim et al., “Combination therapy of renal cell carcinoma or breast Cancer patients with dendritic cell vaccine and IL-2: results from a phase I/II trial,” Journal of Translational Medicine, vol. 9, no. 1, article no. 178, 2011.