Aim. To evaluate the frequency of atypical and malignant meningiomas and analyze recurrence rate; to study the morbidity and mortality of these tumors compared to benign meningiomas. Methods. During 1992–2007, 16 patients with malignant and 16 patients with atypical meningioma were operated in Neurosurgery Department of Thessaloniki's Papanikolaou Hospital. We analyzed tumor histology, location, and extent of surgical resection with respect to tumor reappearance and patients' outcome and compared the behavior of benign versus nonbenign meningiomas. Results. Malignant meningiomas accounted for 4.4% (16 patients) and atypical meningiomas for another 4.4% of the series of patients (353) who were operated for intracranial meningioma at our department that period. Malignant meningiomas recurred at a rate of 75% and atypical meningiomas recurred at a rate of 41.6%. There was a significant association of the histological classification (benign, atypical, and malignant) with recurrence ( ). The recurrence rate after complete resection was 13.8%. The recurrence rate for incomplete resection was 46.7%. Extent of tumor removal was significant to recurrence ( ) for benign as well for atypical and malignant meningiomas. Tumor location ( ) was not significant to recurrence. Conclusions. Atypical and malignant meningiomas appeared at a rate of 8.8% of our series of intracranial meningiomas. They showed a significant predisposition to recur. These rare subtypes have higher morbidity and mortality rates than benign meningiomas. Recurrence depends primarily on the extent of surgical removal and on the histological characterization of the tumor as atypical or malignant. 1. Introduction A small percentage of intracranial meningiomas appear to have a malignant potential [1–3]. These rare histological subtypes characterized as malignant (grade III) and atypical (grade II) exhibit aggressive clinical behavior and are less studied than the classic benign (grade I) tumors [2, 4]. Objective of this study was to evaluate the incidence of atypical and malignant meningiomas and estimate their effect on recurrence, morbidity, and mortality. The postoperative behavior of the meningioma was followed and an effort was made to assess whether tumor’s location, histopathological subtype, and the extent of surgical resection were predictive factors for recurrence. 2. Clinical Material and Methods From 1992 to 2007, thirty-two patients with grade II or III meningioma, were treated surgically by the staff of the Neurosurgical department of Thessaloniki “G. Papanikolaou” Hospital. This study
References
[1]
J. Jaaskelainen, M. Haltia, and A. Servo, “Atypical and anaplastic meningiomas: radiology, surgery, radiotherapy, and outcome,” Surgical Neurology, vol. 25, no. 3, pp. 233–242, 1986.
[2]
T. A. Mattei, J. A. Mattei, R. Ramina, P. H. Aguiar, J. P. Plese, and R. Marino, “Edema and malignancy in meningiomas,” Clinics, vol. 60, no. 3, pp. 201–206, 2005.
[3]
A. Modha and P. H. Gutin, “Diagnosis and treatment of atypical and anaplastic meningiomas: a review,” Neurosurgery, vol. 57, no. 3, pp. 538–549, 2005.
[4]
T. Y. Jung, S. Jung, S. R. Shin et al., “Clinical and histopathological analysis of cystic meningiomas,” Journal of Clinical Neuroscience, vol. 12, no. 6, pp. 651–655, 2005.
[5]
P. Kleihues and W. Cavenee, World Health Organization Classification of Tumors: Pathology and Genetics of Tumors of the Nervous System, IARC Press, Lyon, France edition, 2000.
[6]
D. Simpson, “The recurrence of intracranial meningiomas after surgical treatment,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 20, no. 1, pp. 22–39, 1957.
[7]
O. Al-Mefty, P. A. S. Kadri, S. Pravdenkova, J. R. Sawyer, C. Stangeby, and M. Husain, “Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings,” Journal of Neurosurgery, vol. 101, no. 2, pp. 210–218, 2004.
[8]
J. Ayerbe, D. R. Lobato, J. De la Cruz et al., “Risk factors predicting recurrence in patients operated on for intracranial meningioma. A multivariate analysis,” Acta Neurochirurgica, vol. 141, no. 9, pp. 921–932, 1999.
[9]
H. Kolles, I. Niedermayer, C. Schmitt et al., “Triple approach for diagnosis and grading of meningiomas: histology, morphometry of Ki-67/Feulgen stainings, and cytogenetics,” Acta Neurochirurgica, vol. 137, no. 3-4, pp. 174–181, 1995.
[10]
R. E. Mantle, B. Lach, M. R. Delgado, S. Baeesa, and G. Bélanger, “Predicting the probability of meningioma recurrence based on the quantity of peritumoral brain edema on computerized tomography scanning,” Journal of Neurosurgery, vol. 91, no. 3, pp. 375–383, 1999.
[11]
C. Mawrin, T. Sasse, E. Kirches et al., “Different activation of mitogen-activated protein kinase and Akt signaling is associated with aggressive phenotype of human meningiomas,” Clinical Cancer Research, vol. 11, no. 11, pp. 4074–4082, 2005.
[12]
D. Schiffer, C. Ghimenti, and V. Fiano, “Absence of histological signs of tumor progression in recurrences of completely resected meningiomas,” Journal of Neuro-Oncology, vol. 73, no. 2, pp. 125–130, 2005.
[13]
M. K. Aghi, B. S. Carter, G. R. Cosgrove et al., “Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation,” Neurosurgery, vol. 64, no. 1, pp. 56–60, 2009.
[14]
B. J. Goldsmith, W. M. Wara, and C. B. Wilson, “Postoperative irradiation for subtotally resected m: a retrospective analysis of 140 patients treated from 1967 to 1990,” Journal of Neurosurgery, vol. 80, no. 2, pp. 195–201, 1994.
[15]
E. B. Hug, A. DeVries, A. F. Thornton et al., “Management of atypical and malignant meningiomas: role of high-dose, 3D-conformal radiation therapy,” Journal of Neuro-Oncology, vol. 48, no. 2, pp. 151–160, 2000.
[16]
R. Mair, K. Morris, I. Scott, D. Phil, F. R. C. Path, and T. A. Carroll, “Radiotherapy for atypical meningiomas: clinical article,” Journal of Neurosurgery, vol. 115, no. 4, pp. 811–819, 2011.
[17]
M. C. Chamberlain and D. T. Blumenthal, “Intracranial meningiomas: diagnosis and treatment,” Expert Review of Neurotherapeutics, vol. 4, no. 4, pp. 641–648, 2004.
[18]
M. Ohta and I. Takeshita, “A case of recurrent convexity meningioma with malignant transformation 26 years after total tumor removal,” Neurological Surgery, vol. 29, no. 1, pp. 81–85, 2001.