全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Significance of Haemodynamic and Haemostatic Factors in the Course of Different Manifestations of Cerebral Small Vessel Disease: The SHEF-CSVD Study—Study Rationale and Protocol

DOI: 10.1155/2013/424695

Full-Text   Cite this paper   Add to My Lib

Abstract:

Rationale. This paper describes the rationale and design of the SHEF-CSVD Study, which aims to determine the long-term clinical and radiological course of cerebral small vessel disease (CSVD) and to evaluate haemostatic and haemodynamic prognostic factors of the condition. Design. This single-centre, prospective, non-interventional cohort study will follow 150 consecutive patients with different clinical manifestations of CSVD (lacunar ischaemic stroke, vascular dementia, vascular parkinsonism or spontaneous deep, intracerebral haemorrhage) and 50 age- and sex-matched controls over a period of 24 months. The clinical and radiological course will be evaluated basing on a detailed neurological, neuropsychological and MRI examinations. Haemodynamic (cerebral vasoreactivity, 24?h blood pressure control) and haemostatic factors (markers of endothelial and platelet dysfunction, brachial artery flow-mediated dilatation test) will be determined. Discussion. The scheduled study will specifically address the issue of haemodynamic and haemostatic prognostic factors and their course over time in various clinical manifestations of CSVD. The findings may aid the development of prophylactic strategies and individualised treatment plans, which are critical during the early stages of the disease. 1. Background Effective therapeutic and preventive strategies in neurological diseases of the elderly are lacking. Cerebral small vessel disease (CSVD) is one of the most important and common vascular diseases of the brain. High morbidity rates are associated with CSVD; this disease leads to recurrent ischaemic and haemorrhagic strokes, gait disturbances, vascular dementia, and vascular parkinsonism [1, 2]. The course and prognosis of the disorder are not well known. Although patients with CSVD may exhibit white-matter lesion burdens on conventional MRIs that are almost identical, they may present clinically with a range of motor and cognitive deficits that is greatly varied. CSVD is related to vascular risk factors like hypertension, advanced age, and smoking; however, the direct pathophysiological mechanisms of the disease remain unclear [3]. Potential mechanisms include cerebrovascular risk factor-induced ischaemic cerebral changes and other nonspecific cerebral processes, such as generalised vascular disease or normal ageing [4]. The pathological components of CSVD probably include increased permeability of the blood-brain-barrier (BBB), enlargement of perivascular spaces, lacunar infarcts, white-matter lesions (WMLs), and microbleeds [5]. CSVD encompasses degenerative

References

[1]  N. D. Prins, E. J. Van Dijk, T. Den Heijer et al., “Cerebral white matter lesions and the risk of dementia,” Archives of Neurology, vol. 61, no. 10, pp. 1531–1534, 2004.
[2]  H. Baezner, C. Blahak, A. Poggesi et al., “Association of gait and balance disorders with age-related white matter changes: the LADIS Study,” Neurology, vol. 70, no. 12, pp. 935–942, 2008.
[3]  L. Pantoni, “Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges,” The Lancet Neurology, vol. 9, no. 7, pp. 689–701, 2010.
[4]  R. L. C. Vogels, W. M. Flier, HartenB, et al., “Brain magnetic resonance imaging abnormalities inpatients with heart failure,” European Journal of Heart Failure, vol. 9, pp. 1003–1009, 2007.
[5]  R. P. W. Rouhl, J. G. M. Damoiseaux C, J. Lodder, et al., “Vascular inflammation in cerebral small vessel disease,” Neurobiology of Aging, vol. 33, no. 8, pp. 1800–1806.
[6]  L. Pantoni and J. H. Garcia, “Pathogenesis of leukoaraiosis: a review,” Stroke, vol. 28, no. 3, pp. 652–659, 1997.
[7]  J. M. Wardlaw, “What causes lacunar stroke?” Journal of Neurology, Neurosurgery & Psychiatry, vol. 76, pp. 617–619, 2005.
[8]  J. C. Zijlmans, S. E. Daniel, A. J. Hughes, T. Revesz, and A. J. Lees, “Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis,” Movement Disorders, vol. 19, pp. 630–640.
[9]  World Health Organization, The ICD-10 Classification of Mental and Behavioural Disorders. Diagnostic Criteria For Research, World Health Organization, Geneva, Switzerland, 1993.
[10]  A. Hassan, B. J. Hunt, M. O'Sullivan et al., “Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis,” Brain, vol. 126, no. 2, pp. 424–432, 2003.
[11]  H. K. Yip, C. W. Liou, H. W. Chang, M. Y. Lan, J. S. Liu, and M. C. Chen, “Link between platelet activity and outcomes after an ischemic stroke,” Cerebrovascular Diseases, vol. 20, no. 2, pp. 120–128, 2005.
[12]  F. Iemolo, G. Duro, C. Rizzo, L. Castiglia, V. Hachinski, and C. Caruso, “Pathophysiology of vascular dementia,” Immun Ageing, vol. 6, article 13, 2009.
[13]  S. L. M. Bakker, F. E. De Leeuw, J. C. De Groot, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler, “Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly,” Neurology, vol. 52, no. 3, pp. 578–583, 1999.
[14]  A. Y. Gur, D. Gücüyener, N. üzüner et al., “Cerebral vasomotor reactivity of patients with acute ischemic stroke: cortical versus subcortical infarcts: an Israeli-Turkish collaborative study,” Journal of the Neurological Sciences, vol. 257, no. 1-2, pp. 121–125, 2007.
[15]  A. Ruitenberg, T. Den Heijer, S. L. M. Bakker et al., “Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study,” Annals of Neurology, vol. 57, no. 6, pp. 789–794, 2005.
[16]  J. Hatazawa, E. Shimosegawa, T. Satoh, H. Toyoshima, and T. Okudera, “Subcortical hypoperfusion associated with asymptomatic white matter lesions on magnetic resonance imaging,” Stroke, vol. 28, no. 10, pp. 1944–1947, 1997.
[17]  J. Bamford, P. Sandercock, L. Jones, and C. Warlow, “The natural history of lacunar infarction: the Oxfordshire Community Stroke Project,” Stroke, vol. 18, no. 3, pp. 545–551, 1987.
[18]  H. P. Adams, “Low molecular weight heparinoid, ORG 10172 (danaparoid), and outcome after acute ischemic stroke: a randomized controlled trial,” Journal of the American Medical Association, vol. 279, no. 16, pp. 1265–1272, 1998.
[19]  H. I. Hurtig, “Vascular Parkinsonism,” in Parkinsonian Syndromes, M. B. Stem and W. C. Koller, Eds., pp. 81–93, Marcel-Dekker, New York, NY, USA.
[20]  H. C. Chui, J. I. Victoroff, D. Margolin, W. Jagust, R. Shankle, and R. Katzman, “Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer's Disease Diagnostic and Treatment Centers,” Neurology, vol. 42, no. 3 I, pp. 473–480, 1992.
[21]  G. C. Roman, T. K. Tatemichi, T. Erkinjuntti et al., “Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop,” Neurology, vol. 43, no. 2, pp. 250–260, 1993.
[22]  S. Wiederkehr, M. Simard, C. Fortin, and R. Van Reekum, “Validity of the clinical diagnostic criteria for vascular dementia: a critical review. Part II,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 20, no. 2, pp. 162–177, 2008.
[23]  E. G. Grant, C. B. Benson, G. L. Moneta et al., “Carotid artery stenosis: gray-scale and doppler US diagnosis—society of radiologists in ultrasound consensus conference,” Radiology, vol. 229, no. 2, pp. 340–346, 2003.
[24]  M. A. Sloan, A. V. Alexandrov, C. H. Tegeler et al., “Assessment: transcranial doppler ultrasonography. report of the therapeutics and technology assessment subcommittee of the american academy of neurology,” Neurology, vol. 62, no. 9, pp. 1468–1481, 2004.
[25]  J. A. Whitworth, “2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension,” Journal of Hypertension, vol. 21, no. 11, pp. 1983–1992, 2003.
[26]  Y. Handelsman, J. I. Mechanick, L. Blonde et al., “American Association of Clinical Endocrinologists Medical Guidelines for clinical practice for developing a diabetes mellitus comprehensive care plan: executive summary,” Endocrine Practice, vol. 17, supplement 2, pp. 287–302, 2011.
[27]  J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001.
[28]  L. B. Goldstein, C. Bertels, and J. Davis, “Interrater reliability of the NIH stroke scale,” Archives of Neurology, vol. 46, no. 6, pp. 660–662, 1989.
[29]  K. Berg, S. Wood-Dauphinee, J. I. Williams, and D. Gayton, “Measuring balance in the elderly: preliminary development of an instrument,” Physiotherapy Canada, vol. 41, no. 6, pp. 304–311, 1989.
[30]  M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““Mini mental state”. a practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[31]  D. Wechsler, Wechsler Memory Scale-Revised Manual, Psychological Corporation, San Antonio, Tx, USA, 1987.
[32]  S. A. Benton, Benton Visual Retention Test, The Psychological Corporation, San Antonio, Tx, USA, 5th edition, 1992.
[33]  E. A. Bergh, “A simple objective technique for measuring flexibility in thinking,” The Journal of General Psychology, vol. 39, pp. 15–22, 1948.
[34]  K. L. Bryan, “Language prosody and the right hemisphere,” Aphasiology, vol. 3, no. 4, pp. 285–299, 1989.
[35]  O. Spreen and A. H. Risser, Assessment of Aphasia, Oxford University Press, Oxford, UK, 2003.
[36]  O. Spreen and A. L. Benton, Neurosensory Center Comprehensive Examination for Aphasia. Manual and Instructions, University of Victoria, Victoria, Canada, 1969.
[37]  B. Agrell and O. Dehlin, “The clock-drawing test,” Age and Ageing, vol. 27, no. 3, pp. 399–403, 1998.
[38]  J. A. Yesavage, T. L. Brink, and T. L. Rose, “Development and validation of a geriatric depression screening scale: a preliminary report,” Journal of Psychiatric Research, vol. 17, no. 1, pp. 37–49, 1982.
[39]  J. C. Morris, “The Clinical Dementia Rating (CDR): current version and scoring rules,” Neurology, vol. 43, no. 11, pp. 2412–2414, 1993.
[40]  C. A. McHorney, J. E. Ware, and A. E. Raczek, “The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs,” Medical Care, vol. 31, no. 3, pp. 247–263, 1993.
[41]  W. G. Bradley, “Hemorrhage and brain iron,” in Magnetic Resonance Imaginged, Mosby, St Louis, Mo, USA, 2nd edition, 1992.
[42]  M. W. Vernooij, M. A. Ikram, H. L. Tanghe et al., “Incidental findings on brain MRI in the general population,” New England Journal of Medicine, vol. 357, no. 18, pp. 1821–1828, 2007.
[43]  L. O. Wahlund, F. Barkhof, F. Fazekas et al., “A new rating scale for age-related white matter changes applicable to MRI and CT,” Stroke, vol. 32, no. 6, pp. 1318–1322, 2001.
[44]  F. Fazekas, J. B. Chawluk, and A. Alavi, “MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging,” American Journal of Roentgenology, vol. 149, no. 2, pp. 351–356, 1987.
[45]  P. M. Parizel, L. van den Hauwe, F. de Belder, et al., “Magnetic resonance imaging of the brain,” in Clinical MR Imaging. A Practical Approach, P. Reimer, P. M. Parizel, J. F. M. Meaney, and F. A. Stichnoth, Eds., pp. 187–189, Springer, 2010.
[46]  F. Pasquer, D. Leys, J. G. E. Weerts, F. Mounier, FrederikBarkhof, and P. Scheltens, “Inter- and intraobserver reproducibility of cerebral atrophy assessment on MRI scans with hemispheric infarcts,” European Neurology, vol. 36, no. 5, pp. 268–272, 1996.
[47]  C. P. Derdeyn, R. L. Grubb, and W. J. Powers, “Cerebral hemodynamic impairment: methods of measurement and association with stroke risk,” Neurology, vol. 53, no. 2, pp. 251–259, 1999.
[48]  A. D. Wijnhoud, M. Franckena, A. van der Lugt, P. J. Koudstaal, and E. D. W. J. Dippel, “Inadequate acoustical temporal bone window in patients with a transient ischemic attack or minor stroke: role of skull thickness and bone density,” Ultrasound in Medicine and Biology, vol. 34, no. 6, pp. 923–929, 2008.
[49]  G. Settakis, C. Molnár, L. Kerényi et al., “Acetazolamide as a vasodilatory stimulus in cerebrovascular diseases and in conditions affecting the cerebral vasculature,” European Journal of Neurology, vol. 10, no. 6, pp. 609–620, 2003.
[50]  L. Provinciali, M. G. Ceravolo, and P. Minciotti, “A transcranial Doppler study of vasomotor reactivity in symptomatic carotid occlusion,” Cerebrovascular Diseases, vol. 3, pp. 27–32, 1993.
[51]  G. Settakis, A. Lengyel, C. Molnár, D. Bereczki, L. Csiba, and B. Fülesdi, “Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests,” Journal of Neuroimaging, vol. 12, no. 3, pp. 252–258, 2002.
[52]  H. S. Markus and M. J. G. Harrison, “Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus,” Stroke, vol. 23, no. 5, pp. 668–673, 1992.
[53]  G. Kozera and W. Nyka, “Zastosowanie przezczaszkowej ultrasonografii dopplerowskiej w ocenie autoregulacji przep?ywu mózgowego,” in Podrecznik Diagnostyki Ultrasonograficznej w Neurologii, R. Kazmierski, Ed., pp. 325–339, Wydawnictwo Czelej, 2011.
[54]  J. M. De Bray and B. Glatt, “Quantification of atheromatous stenosis in the extracranial internal carotid artery,” Cerebrovascular Diseases, vol. 5, pp. 141–126, 1995.
[55]  M. C. Corretti, T. J. Anderson, E. J. Benjamin et al., “Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the international brachial artery reactivity task force,” Journal of the American College of Cardiology, vol. 39, no. 2, pp. 257–265, 2002.
[56]  M. L. Bots, J. Westerink, T. J. Rabelink, and E. J. P. De Koning, “Assessment of flow-mediated vasodilatation (FMD) of the brachial artery: effects of technical aspects of the FMD measurement on the FMD response,” European Heart Journal, vol. 26, no. 4, pp. 363–368, 2005.
[57]  O. Tóth, A. Calatzis, S. Penz, H. Losonczy, and W. Siess, “Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood,” Thrombosis and Haemostasis, vol. 96, no. 6, pp. 781–788, 2006.
[58]  L. D. Hubbard, R. J. Brothers, W. N. King et al., “Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study,” Ophthalmology, vol. 106, no. 12, pp. 2269–2280, 1999.
[59]  R. Schmidt, F. Fazekas, P. Kapeller, H. Schmidt, and H. P. Hartung, “MRI white matter hyperintensities: three-year follow-up of the Austrian Stroke Prevention Study,” Neurology, vol. 53, no. 1, pp. 132–139, 1999.
[60]  E. J. Van Dijk, N. D. Prins, H. A. Vrooman, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler, “Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan Study,” Stroke, vol. 39, no. 10, pp. 2712–2719, 2008.
[61]  E. M. Macy, T. E. Hayes, and R. P. Tracy, “Variability in the measurement of C-reactive protein in healthy subjects: implications for reference intervals and epidemiological applications,” Clinical Chemistry, vol. 43, no. 1, pp. 52–58, 1997.
[62]  H. S. Markus, B. Hunt, K. Palmer, C. Enzinger, H. Schmidt, and R. Schmidt, “Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study,” Stroke, vol. 36, no. 7, pp. 1410–1414, 2005.
[63]  M. O. Giwa, J. Williams, K. Elderfield, et al., “Neuropathologic evidence of endothelial changes in cerebral small vessel disease,” Neurology, vol. 78, no. 3, pp. 167–174, 2012.
[64]  A. G. W. van Norden, K. F. de Laat, R. A. R. Gons et al., “Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol,” BMC Neurology, vol. 11, article no. 29, 2011.
[65]  R. Behrouz, A. R. Malek, and M. T. Torbey, “Small vessel cerebrovascular disease: the past, present, and future,” Stroke Research and Treatment, vol. 2012, Article ID 839151, 8 pages, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133