全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Roles of Integrins and Intracellular Molecules in the Migration and Neuritogenesis of Fetal Cortical Neurons: MEK Regulates Only the Neuritogenesis

DOI: 10.1155/2013/859257

Full-Text   Cite this paper   Add to My Lib

Abstract:

The roles of integrin subunits and intracellular molecules in regulating the migration and neuritogenesis of neurons isolated from 16.5 gestation days rat fetal cortices were examined using in vitro assays. Results showed that laminin supported the migration of fetal cortical neurons better than fibronectin and that the fetal cortical neurons migrated on laminin using β1 and α3 integrin subunits which make up the α3β1 integrin receptor. On fibronectin, the migration was mediated by β1 integrin subunit. Perturbation of src kinase, phospholipase C, or protein kinase C activity, inhibition of IP3 receptor mediated calcium release, or chelation of intracellular calcium inhibited both migration and neuritogenesis, whereas inhibition of growth factor signaling via MEK inhibited only the neuritogenesis. The detection of α1 and α9 transcripts suggested that the migration of fetal cortical neurons may also be mediated by α1β1 and α9β1 integrin receptors. Results showed that calcium may regulate migration and neuritogenesis by maintaining optimum levels of microtubules in the fetal cortical neurons. It is concluded that the fetal cortical neurons are fully equipped with the integrin signaling cascade required for their migration and neuritogenesis, whereas crosstalk between the integrin and growth-factor signaling regulate only the neuritogenesis. 1. Introduction During brain development, postmitotic neurons migrate from their site of origin to distant places, differentiate, and make connections forming different layers of the cortex. Defects in this process results in abnormal neuronal positioning and connections in the brain, which may cause neurobehavioral problems later in life [1]. Neuritogenesis, an early step of neuron differentiation, is the synthesis of multiple growth cone tipped extensions (neurites) that ultimately form the axons and dendrites of neurons [2]. Mechanisms that regulate the migration and differentiation of neurons are not fully understood. Cell surface integrin receptors, each consisting of an α and a β subunit, play critical roles in the glial-guided migration of neurons in the brain [3]. The extracellular domains of the receptor subunits bind with extracellular matrix (ECM) proteins (such as fibronectin and laminin) and the cytosolic domains of β subunits interact with kinases, adaptor molecules, and the cytoskeleton [4]. These interactions facilitate the “outside-in” and the “inside-out” signaling across the cell membrane by the integrin heterodimers [5] that may lead to cell migration and neuritogenesis [6]. Integrin receptors with

References

[1]  C. Métin, J. P. Baudoin, S. Raki?, and J. G. Parnavelas, “Cell and molecular mechanisms involved in the migration of cortical interneurons,” European The Journal of Neuroscience, vol. 23, no. 4, pp. 894–900, 2006.
[2]  S. L. Gupton and F. B. Gertler, “Integrin signaling switches the cytoskeletal and exocytic machinery that drives neuritogenesis,” Developmental Cell, vol. 18, no. 5, pp. 725–736, 2010.
[3]  E. S. Anton, J. A. Kreidberg, and P. Rakic, “Distinct functions of α3 and α(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex,” Neuron, vol. 22, no. 2, pp. 277–289, 1999.
[4]  I. D. Campbell and M. J. Humphries, “Integrin structure, activation, and interactions,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 3, pp. 1–14, 2011.
[5]  J. Qin, O. Vinogradova, and E. F. Plow, “Integrin bidirectional signaling: a molecular view,” PLoS Biology, vol. 2, no. 6, article e169, 2004.
[6]  R. Milner and I. L. Campbell, “The integrin family of cell adhesion molecules has multiple functions within the CNS,” Journal of Neuroscience Research, vol. 69, no. 3, pp. 286–291, 2002.
[7]  M. Barczyk, S. Carracedo, and D. Gullberg, “Integrins,” Cell and Tissue Research, vol. 339, no. 1, pp. 269–280, 2010.
[8]  L. F. Reichardt and K. J. Tomaselli, “Extracellular matrix molecules and their receptors: functions in neural development,” Annual Review of Neuroscience, vol. 14, pp. 531–570, 1991.
[9]  R. S. Schmid and E. S. Anton, “Role of integrins in the development of the cerebral cortex,” Cerebral Cortex, vol. 13, no. 3, pp. 219–224, 2003.
[10]  R. S. Schmid, S. Shelton, A. Stanco, Y. Yokota, J. A. Kreidberg, and E. S. Anton, “α3β1 integrin modulates neuronal migration and placement during early stages of cerebral cortical development,” Development, vol. 131, no. 24, pp. 6023–6031, 2004.
[11]  E. Georges-Labouesse, M. Mark, N. Messaddeq, and A. Gansmüller, “Essential role of α6 integrins in cortical and retinal lamination,” Current Biology, vol. 8, no. 17, pp. 983–986, 1998.
[12]  G. Marchetti, S. Escuin, A. van der Flier, A. de Arcangelis, R. O. Hynes, and E. Georges-Labouesse, “Integrin α5β1 is necessary for regulation of radial migration of cortical neurons during mouse brain development,” European The Journal of Neuroscience, vol. 31, no. 3, pp. 399–409, 2010.
[13]  D. S. Galileo, J. Majors, A. F. Horwitz, and J. R. Sanes, “Retrovirally introduced antisense integrin RNA inhibits neuroblast migration in vivo,” Neuron, vol. 9, no. 6, pp. 1117–1131, 1992.
[14]  C. Andressen, S. Adrian, R. F?ssler, S. Arnhold, and K. Addicks, “The contribution of β1 integrins to neuronal migration and differentiation depends on extracellular matrix molecules,” European Journal of Cell Biology, vol. 84, no. 12, pp. 973–982, 2005.
[15]  M. F. DeFreitas, C. K. Yoshida, W. A. Frazier, D. L. Mendrick, R. M. Kypta, and L. F. Reichardt, “Identification of integrin α3β1 as a neuronal thrombospondin receptor mediating neurite outgrowth,” Neuron, vol. 15, no. 2, pp. 333–343, 1995.
[16]  U. Muller, B. Bossy, K. Venstrom, and L. F. Reichardt, “Integrin α8β1 promotes attachment, cell spreading, and neurite outgrowth on fibronectin,” Molecular Biology of the Cell, vol. 6, no. 4, pp. 433–448, 1995.
[17]  R. Belvindrah, D. Graus-Porta, S. Goebbels, K. A. Nave, and U. Müller, “β1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex,” The Journal of Neuroscience, vol. 27, no. 50, pp. 13854–13865, 2007.
[18]  R. Fassler and M. Meyer, “Consequences of lack of β1 integrin gene expression in mice,” Genes and Development, vol. 9, no. 15, pp. 1896–1908, 1995.
[19]  D. Graus-Porta, S. Blaess, M. Senften et al., “β1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex,” Neuron, vol. 31, no. 3, pp. 367–379, 2001.
[20]  E. F?rster, A. Tielsch, B. Saum et al., “Reelin, disabled 1, and β1 integrins are required for the formation of the radial glial scaffold in the hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 13178–13183, 2002.
[21]  A. Niewmierzycka, J. Mills, R. St.-Arnaud R., S. Dedhar, and L. F. Reichardt, “Integrin-linked kinase deletion from mouse cortex results in cortical lamination defects resembling cobblestone lissencephaly,” The Journal of Neuroscience, vol. 25, no. 30, pp. 7022–7031, 2005.
[22]  R. Belvindrah, P. Nalbant, S. Ding, C. Wu, G. M. Bokoch, and U. Müller, “Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development,” Molecular and Cellular Neuroscience, vol. 33, no. 2, pp. 109–125, 2006.
[23]  I. Nikonenko, N. Toni, M. Moosmayer, Y. Shigeri, D. Muller, and L. S. Jones, “Integrins are involved in synaptogenesis, cell spreading, and adhesion in the postnatal brain,” Developmental Brain Research, vol. 140, no. 2, pp. 185–194, 2003.
[24]  P. Liesi, I. Seppala, and E. Trenkner, “Neuronal migration in cerebellar microcultures is inhibited by antibodies against a neurite outgrowth domain of laminin,” Journal of Neuroscience Research, vol. 33, no. 1, pp. 170–176, 1992.
[25]  B. Zassler, C. Schermer, and C. Humpel, “Protein kinase C and phosphoinositol-3-kinase mediate differentiation or proliferation of slice-derived rat microglia,” Pharmacology, vol. 67, no. 4, pp. 211–215, 2003.
[26]  C. Schermer and C. Humpel, “Granulocyte macrophage-colony stimulating factor activates microglia in rat cortex organotypic brain slices,” Neuroscience Letters, vol. 328, no. 2, pp. 180–184, 2002.
[27]  E. M. Stettler and D. S. Galileo, “Radial glia produce and align the ligand fibronectin during neuronal migration in the developing chick brain,” Journal of Comparative Neurology, vol. 468, no. 3, pp. 441–451, 2004.
[28]  P. Liesi, D. Dahl, and A. Vaheri, “Laminin is produced by early rat astrocytes in primary culture,” Journal of Cell Biology, vol. 96, no. 3, pp. 920–924, 1983.
[29]  A. E. Aplin, A. Howe, S. K. Alahari, and R. L. Juliano, “Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins,” Pharmacological Reviews, vol. 50, no. 2, pp. 197–263, 1998.
[30]  R. L. Juliano, P. Reddig, S. Alahari, M. Edin, A. Howe, and A. Aplin, “Integrin regulation of cell signalling and motility,” Biochemical Society Transactions, vol. 32, pp. 443–446, 2004.
[31]  B. P. Eliceiri, “Integrin and growth factor receptor crosstalk,” Circulation Research, vol. 89, no. 12, pp. 1104–1110, 2001.
[32]  D. A. Hsia, S. T. Lim, J. A. Bernard-Trifilo et al., “Integrin α4β1 promotes focal adhesion kinase-independent cell motility via α4 cytoplasmic domain-specific activation of c-Src,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9700–9712, 2005.
[33]  J. E. Bleasdale, N. R. Thakur, R. S. Gremban et al., “Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils,” Journal of Pharmacology and Experimental Therapeutics, vol. 255, no. 2, pp. 756–768, 1990.
[34]  L. M. Gleeson, C. Chakraborty, T. Mckinnon, and P. K. Lala, “Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through α5β1 integrin via mitogen-activated protein kinase pathway,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 6, pp. 2484–2493, 2001.
[35]  H. T. Ma, K. Venkatachalam, H. S. Li et al., “Assessment of the role of the inositol 1,4,5-trisphosphate receptor in the activation of transient receptor potential channels and store-operated Ca2+ entry channels,” Journal of Biological Chemistry, vol. 276, no. 22, pp. 18888–18896, 2001.
[36]  K. Hirai, H. Yoshioka, M. Kihara et al., “Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: a tissue culture study,” Developmental Brain Research, vol. 114, no. 1, pp. 63–67, 1999.
[37]  T. Ranta-Knuuttila, T. Kiviluoto, H. Mustonen et al., “Migration of primary cultured rabbit gastric epithelial cells requires intact protein kinase C and Ca2+/calmodulin activity,” Digestive Diseases and Sciences, vol. 47, no. 5, pp. 1008–1014, 2002.
[38]  M. Phillippe and A. Basa, “The effects of ruthenium red, an inhibitor of calcium-induced calcium release, on phasic myometrial contractions,” Biochemical and Biophysical Research Communications, vol. 221, no. 3, pp. 656–661, 1996.
[39]  N. Maeda and M. Noda, “Involvement of receptor-like protein tyrosine phosphatase ζ/RPTPβ and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration,” Journal of Cell Biology, vol. 142, no. 1, pp. 203–216, 1998.
[40]  U. K. Rout and J. M. Dhossche, “Liquid-diet with alcohol alters maternal, fetal and placental weights and the expression of molecules involved in integrin signaling in the fetal cerebral cortex,” International Journal of Environmental Research and Public Health, vol. 7, no. 11, pp. 4023–4036, 2010.
[41]  J. Aarum, K. Sandberg, S. L. B. Haeberlein, and M. A. A. Persson, “Migration and differentiation of neural precursor cells can be directed by microglia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15983–15988, 2003.
[42]  J. Segarra, L. Balenci, T. Drenth, F. Maina, and F. Lamballe, “Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 4771–4778, 2006.
[43]  P. R. Borghesani, J. M. Peyrin, R. Klein et al., “BDNF stimulates migration of cerebellar granule cells,” Development, vol. 129, no. 6, pp. 1435–1442, 2002.
[44]  D. L. Mendrick and D. M. Kelly, “Temporal expression of VLA-2 and modulation of its ligand specificity by rat glomerular epithelial cells in vitro,” Laboratory Investigation, vol. 69, no. 6, pp. 690–702, 1993.
[45]  T. A. Ferguson and T. S. Kupper, “Antigen-independent processes in antigen-specific immunity: a role for α4 integrin,” Journal of Immunology, vol. 150, no. 4, pp. 1172–1182, 1993.
[46]  G. T. van Nhieu and R. R. Isberg, “The Yersinia pseudotuberculosis invasin protein and human fibronectin bind to mutually exclusive sites on the α5β1 integrin receptor,” Journal of Biological Chemistry, vol. 266, no. 36, pp. 24367–24375, 1991.
[47]  K. Moulder, K. Roberts, E. M. Shevach, and J. E. Coligan, “The mouse vitronectin receptor is a T cell activation antigen,” Journal of Experimental Medicine, vol. 173, no. 2, pp. 343–347, 1991.
[48]  M. Aumailley, R. Timpl, and A. Sonnenberg, “Antibody to integrin α6 subunit specifically inhibits cell-binding to laminin fragment 8,” Experimental Cell Research, vol. 188, no. 1, pp. 55–60, 1990.
[49]  G. F. Burns, L. Cosgrove, and T. Triglia, “The IIb-IIIa glycoprotein complex that mediates platelet aggregation is directly implicated in leukocyte adhesion,” Cell, vol. 45, no. 2, pp. 269–280, 1986.
[50]  E. A. Wayner, W. G. Carter, R. S. Piotrowicz, and T. J. Kunicki, “The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa,” Journal of Cell Biology, vol. 107, no. 5, pp. 1881–1891, 1988.
[51]  U. K. Rout, “Valproate, thalidomide and ethyl alcohol alter the migration of HTR-8/SVneo cells,” Reproductive Biology and Endocrinology, vol. 4, article 44, 2006.
[52]  N. Maitra, I. L. Flink, J. J. Bahl, and E. Morkin, “Expression of α and β integrins during terminal differentiation of cardiomyocytes,” Cardiovascular Research, vol. 47, no. 4, pp. 715–725, 2000.
[53]  M. L. Feltri, M. Arona, S. S. Scherer, and L. Wrabetz, “Cloning and sequence of the cDNA encoding the β4 integrin subunit in rat peripheral nerve,” Gene, vol. 186, no. 2, pp. 299–304, 1997.
[54]  M. L. Condic and P. C. Letourneau, “Ligand-induced changes in integrin expression regulate neuronal adhesion and neurite outgrowth,” Nature, vol. 389, no. 6653, pp. 852–856, 1997.
[55]  S. P. Palecek, J. C. Loftust, M. H. Ginsberg, D. A. Lauffenburger, and A. F. Horwitz, “Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness,” Nature, vol. 385, no. 6616, pp. 537–540, 1997.
[56]  R. P. Tucker, J. K. Brunso-Bechtold, D. A. Jenrath et al., “Cellular origins of tenascin in the developing nervous system,” Perspectives on Developmental Neurobiology, vol. 2, no. 1, pp. 89–99, 1994.
[57]  D. Seiffert, M. L. Iruela-Arispe, E. H. Sage, and D. J. Loskutoff, “Distribution of vitronectin mRNA during murine development,” Developmental Dynamics, vol. 203, no. 1, pp. 71–79, 1995.
[58]  J. H. McCarty, A. Lacy-Hulbert, A. Charest et al., “Selective ablation of αv integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death,” Development, vol. 132, no. 1, pp. 165–176, 2005.
[59]  H. Schottelndreier, B. V. Potter, G. W. Mayr, and A. H. Guse, “Mechanisms involved in alpha6beta1-integrin-mediated Ca(2+) signalling,” Cellular Signalling, vol. 13, no. 12, pp. 895–899, 2001.
[60]  K. Fukami, S. Inanobe, K. Kanemaru, and Y. Nakamura, “Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance,” Progress in Lipid Research, vol. 49, no. 4, pp. 429–437, 2010.
[61]  J. H. Choi, Y. R. Yang, S. K. Lee et al., “Phospholipase C-γ1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation,” Cellular Signalling, vol. 19, no. 8, pp. 1784–1796, 2007.
[62]  C. Larsson, “Protein kinase C and the regulation of the actin cytoskeleton,” Cellular Signalling, vol. 18, no. 3, pp. 276–284, 2006.
[63]  J. Q. Zheng and M. M. Poo, “Calcium signaling in neuronal motility,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 375–404, 2007.
[64]  X. Zhang, A. Chattopadhyay, Q. S. Ji et al., “Focal adhesion kinase promotes phospholipase C-γ1 activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9021–9026, 1999.
[65]  N. P. Jones, J. Peak, S. Brader, S. A. Eccles, and M. Katan, “PLCγ1 is essential for early events in integrin signalling required for cell motility,” Journal of Cell Science, vol. 118, pp. 2695–2706, 2005.
[66]  L. Zhou, Y. Jossin, and A. M. Goffinet, “Identification of small molecules that interfere with radial neuronal migration and early cortical plate development,” Cerebral Cortex, vol. 17, no. 1, pp. 211–220, 2007.
[67]  C. T. Zhao, K. Li, J. T. Li et al., “PKCδ regulates cortical radial migration by stabilizing the Cdk5 activator p35,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21353–21358, 2009.
[68]  T. Ng, D. Shima, A. Squire et al., “PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic,” The EMBO Journal, vol. 18, no. 14, pp. 3909–3923, 1999.
[69]  N. Alam, H. L. Goel, M. J. Zarif et al., “The integrin—growth factor receptor duet,” Journal of Cellular Physiology, vol. 213, no. 3, pp. 649–653, 2007.
[70]  A. Umesh, M. A. Thompson, E. N. Chini, K. P. Yip, and J. S. K. Sham, “Integrin ligands mobilize Ca2+ from ryanodine receptor-gated stores and lysosome-related acidic organelles in pulmonary arterial smooth muscle cells,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 34312–34323, 2006.
[71]  E. T. O'Brien, E. D. Salmon, and H. P. Erickson, “How calcium causes microtubule depolymerization,” Cell Motility and the Cytoskeleton, vol. 36, no. 2, pp. 125–135, 1997.
[72]  R. J. Pasterkamp, J. J. Peschon, M. K. Spriggs, and A. L. Kolodkin, “Semaphorin 7A promotes axon outgrowth through integrins and MAPKs,” Nature, vol. 424, no. 6947, pp. 398–405, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133