The skin acts as a complex sensory organ. The emerging new data on peripheral pain mechanisms from within the skin is presented. This data has led to new insights into the potential pain mechanisms for various pain conditions including neuropathic pain (from small fiber neuropathies) and Complex Regional Pain Syndrome. The somatosensory neurons that innervate our skin constantly update our brains on the objects and environmental factors that surround us. Cutaneous sensory neurons expressing nociceptive receptors such as transient receptor potential vanilloid 1 channels and voltage-gated sodium channels are critical for pain transmission. Epidermal cells (such as keratinocytes, Langerhans cells, and Merkel cells) express sensor proteins and neuropeptides; these regulate the neuroimmunocutaneous system and participate in nociception and neurogenic inflammation. In the past two decades, there has been widespread use of modalities such as punch skin biopsies, quantitative sensory testing, and laser-evoked potentials to evaluate small caliber nerve fibers. This paper explores these laboratory techniques as well as the phenomenon of small fiber neuropathy. Treatment using transdermal drug delivery is discussed. There is potential for these findings to predict treatment outcomes in clinical practice and to develop new therapies for different pain conditions. These findings should enhance the physician's ability to evaluate and treat diverse types of pain. 1. Introduction The skin has homeostatic and immunologic barrier functions, but acts as a complex sensory organ as well [1]. The somatosensory neurons that innervate our skin constantly update our brains on the objects and environmental factors that surround us [2]. The neuroimmunocutaneous system (NICS) is responsible for the cutaneous sensations of touch, pressure, temperature, and pain. This sensory transduction occurs via primary afferent nerves following reciprocated signals between neuronal and nonneuronal skin cells of the NICS [1]. New data concerning peripheral pain mechanisms from within the skin have led to new insight into the potential pain mechanisms for various pain conditions including neuropathic pain syndromes such as diabetic neuropathy and Complex Regional Pain Syndrome. 1.1. Cells and Channels The epidermis is largely composed of multiple layers of keratinocytes along with melanocytes, Langerhans cells, and Merkel cells (Figure 1) [3]. All these epidermal cells express sensor proteins and neuropeptides that regulate the NICS and participate in nociception and neurogenic inflammation.
References
[1]
G. Irving, “The role of the skin in peripheral neuropathic pain,” European Journal of Pain Supplements, vol. 4, no. 2, pp. 157–160, 2010.
[2]
S. Maksimovic, Y. Baba, and E. A. Lumpkin, “Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor,” Annals of the New York Academy of Sciences, vol. 1279, no. 1, pp. 13–21, 2013.
[3]
J. A. McGrath and R. A. J. Eady, “Anatomy and organisation of human skin,” in Rook's Textbook of Dermatology, T. Burns, S. Breathnach, N. Cox, and C. Griffiths, Eds., Wiley-Blackwell, London, UK, 7th edition, 2004.
[4]
E. S. Fernandes, M. A. Fernandes, and J. E. Keeble, “The functions of TRPA1 and TRPV1: moving away from sensory nerves,” British Journal of Pharmacology, vol. 166, no. 2, pp. 510–521, 2012.
[5]
P. Zhao, T. P. Barr, Q. Hou et al., “Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain,” Pain, vol. 139, no. 1, pp. 90–105, 2008.
[6]
J. Szolcsányi and E. Pintér, “Transient receptor potential vanilloid 1 as a therapeutic target in analgesia,” Expert Opinion on Therapeutic Targets, 2013.
[7]
I. S. Ramsey, M. Delling, and D. E. Clapham, “An introduction to TRP channels,” Annual Review of Physiology, vol. 68, pp. 619–647, 2006.
[8]
B. C. Kieseier, H. P. Hartung, and H. Wiendl, “Immune circuitry in the peripheral nervous system,” Current Opinion in Neurology, vol. 19, no. 5, pp. 437–445, 2006.
[9]
S. R. Levinson, S. Luo, and M. A. Henry, “The role of sodium channels in chronic pain,” Muscle and Nerve, vol. 46, no. 2, pp. 155–165, 2012.
[10]
R. D. Treede, T. S. Jensen, J. N. Campbell et al., “Neuropathic pain: redefinition and a grading system for clinical and research purposes,” Neurology, vol. 70, no. 18, pp. 1630–1635, 2008.
[11]
D. Bouhassira, M. Lantéri-Minet, N. Attal, B. Laurent, and C. Touboul, “Prevalence of chronic pain with neuropathic characteristics in the general population,” Pain, vol. 136, no. 3, pp. 380–387, 2008.
[12]
G. Lauria, I. S. Merkies, and C. G. Faber, “Small fibre neuropathy,” Current Opinion in Neurology, vol. 25, no. 5, pp. 542–549, 2012.
[13]
J. C. McArthur, “Painful small fiber neuropathies,” Continuum, vol. 18, no. 1, pp. 106–125, 2012.
[14]
J. G. Hoeijmakers, M. Bakkers, E. W. Blom, et al., “Small fibre neuropathy: knowledge is power,” Nederlands Tijdschrift Voor Geneeskunde, vol. 156, no. 7, p. A4224, 2012.
[15]
R. H. Cook-Norris, M. M. Tollefson, A. E. Cruz-Inigo, P. Sandroni, M. D. P. Davis, and D. M. R. Davis, “Pediatric erythromelalgia: a retrospective review of 32 cases evaluated at Mayo Clinic over a 37-year period,” Journal of the American Academy of Dermatology, vol. 66, no. 3, pp. 416–423, 2012.
[16]
C. Han, A. M. Rush, S. D. Dib-Hajj et al., “Sporadic onset of erythermalgia: a gain-of-function mutation in Na v 1.7,” Annals of Neurology, vol. 59, no. 3, pp. 553–558, 2006.
[17]
G. Lauria and R. Lombardi, “Skin biopsy in painful and immune-mediated neuropathies,” Journal of the Peripheral Nervous System, vol. 17, supplement 3, pp. 38–45, 2012.
[18]
S. D. Dib-Hajj, Y. Yang, J. A. Black, and S. G. Waxman, “The Na (V)1. 7 sodium channel: from molecule to man,” Nature Reviews Neuroscience, vol. 14, no. 1, pp. 49–62, 2013.
[19]
G. Lauria and R. Lombardi, “Small fiber neuropathy: is skin biopsy the holy grail,” Current Diabetes Reports, vol. 12, no. 4, pp. 384–392, 2012.
[20]
G. Devigili, V. Tugnoli, P. Penza et al., “The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology,” Brain, vol. 131, no. 7, pp. 1912–1925, 2008.
[21]
D. S. Saperstein, T. D. Levine, M. Levine, and N. Hank, “Usefulness of skin biopsies in the evaluation and management of patients with suspected small fiber neuropathy,” The International Journal of Neuroscience, vol. 123, no. 1, pp. 38–41, 2013.
[22]
D. Lacomis, “Small-fiber neuropathy,” Muscle and Nerve, vol. 26, no. 2, pp. 173–188, 2002.
[23]
R. N. Harden, A. L. Oaklander, A. W. Burton, et al., “Complex regional pain syndrome: practical diagnostic and treatment guidelines, 4th edition,” Pain Medicine, vol. 14, no. 2, pp. 180–229, 2013.
[24]
H. H. Kr?mer, “Immunological aspects of the complex regional pain syndrome (CRPS),” Current Pharmaceutical Design, vol. 18, no. 29, pp. 4546–4549, 2012.
[25]
S. Kharkar, Y. S. Venkatesh, J. R. Grothusen, et al., “Skin biopsy in complex regional pain syndrome: case series and literature review,” Pain Physician, vol. 15, no. 3, pp. 255–266, 2012.
[26]
J. Marinus, G. L. Moseley, F. Birklein et al., “Clinical features and pathophysiology of complex regional pain syndrome,” The Lancet Neurology, vol. 10, no. 7, pp. 637–648, 2011.
[27]
H. H. Kr?mer, T. Eberle, N. üeyler et al., “TNF-α in CRPS and “normal” trauma—Significant differences between tissue and serum,” Pain, vol. 152, no. 2, pp. 285–290, 2011.
[28]
J. S. Lewis and P. Schweinhardt, “Perceptions of the painful body: the relationship between body perception disturbance, pain and tactile discrimination in complex regional pain syndrome,” European Journal of Pain, vol. 16, no. 9, pp. 1320–1330, 2012.
[29]
G. Di Stefano, S. La Cesa, A. Biasiotta, et al., “Laboratory tools for assessing neuropathic pain,” Neurological Sciences, vol. 33, supplement 1, pp. S5–S7, 2012.
[30]
G. Cruccu, P. Anand, N. Attal et al., “EFNS guidelines on neuropathic pain assessment,” European Journal of Neurology, vol. 11, no. 3, pp. 153–162, 2004.
[31]
W. R. Kennedy, M. Nolano, G. Wendelschafer-Crabb, et al., “A skin blister method to study epidermal nerves in peripheral nerve disease,” Muscle and Nerve, vol. 22, no. 3, pp. 360–371, 1999.
[32]
B. G. McCarthy, S. T. Hsieh, A. Stocks, et al., “Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy,” Neurology, vol. 45, no. 10, pp. 1848–1855, 1995.
[33]
G. Lauria, M. Bakkers, C. Schmitz et al., “Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study,” Journal of the Peripheral Nervous System, vol. 15, no. 3, pp. 202–207, 2010.
[34]
Joint Task Force of the EFNS and the PNS and European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the Use of Skin Biopsy in the Diagnosis of Small Fiber Neuropathy, “Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society,” Journal of the Peripheral Nervous System, vol. 15, no. 2, pp. 79–92, 2010.
[35]
D. Walk, G. Wendelschafer-Crabb, C. Davey, and W. R. Kennedy, “Concordance between epidermal nerve fiber density and sensory examination in patients with symptoms of idiopathic small fiber neuropathy,” Journal of the Neurological Sciences, vol. 255, no. 1-2, pp. 23–26, 2007.
[36]
D. N. Herrmann, M. P. McDermott, J. E. Sowden et al., “Is skin biopsy a predictor of transition to symptomatic HIV neuropathy? A longitudinal study,” Neurology, vol. 66, no. 6, pp. 857–861, 2006.
[37]
K. C. Gorson, D. N. Herrmann, R. Thiagarajan et al., “Non-length dependent small fibre neuropathy/ganglionopathy,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 2, pp. 163–169, 2008.
[38]
F. Gemignani, M. Giovanelli, F. Vitetta et al., “Non-length dependent small fiber neuropathy. A prospective case series,” Journal of the Peripheral Nervous System, vol. 15, no. 1, pp. 57–62, 2010.
[39]
S. Khan and L. Zhou, “Characterization of non-length-dependent small-fiber sensory neuropathy,” Muscle and Nerve, vol. 45, pp. 86–91, 2012.
[40]
E. Vlckova-Moravcova, J. Bednarik, J. Belobradkova, and C. Sommer, “Small-fibre involvement in diabetic patients with neuropathic foot pain,” Diabetic Medicine, vol. 25, no. 6, pp. 692–699, 2008.
[41]
C. L. Pan, T. J. Tseng, Y. H. Lin, et al., “Cutaneous innervation in Guillain-Barré syndrome: pathology and clinical correlations,” Brain, vol. 126, part 2, pp. 386–397, 2003.
[42]
F. Wesseldijk, F. J. Huygen, C. Heijmans-Antonissen, S. P. Niehof, and F. J. Zijlstra, “Six years follow-up of the levels of TNF-α and IL-6 in patients with complex regional pain syndrome type 1,” Mediators of Inflammation, vol. 2008, Article ID 469439, 7 pages, 2008.
[43]
L. Parkitny, J. H. McAuley, F. Di Pietro, et al., “Inflammation in complex regional pain syndrome: a systematic review and meta-analysis,” Neurology, vol. 80, no. 1, pp. 106–117, 2013.
[44]
J. G. Groeneweg, F. J. Huygen, C. Heijmans-Antonissen, S. Niehof, and F. J. Zijlstra, “Increased endothelin-1 and diminished nitric oxide levels in blister fluids of patients with intermediate cold type complex regional pain syndrome type 1,” BMC Musculoskeletal Disorders, vol. 7, p. 91, 2006.
[45]
M. Haanp??, N. Attal, M. Backonja, et al., “NeuPSIG guidelines on neuropathic pain assessment,” Pain, vol. 152, no. 1, pp. 14–27, 2011.
[46]
M. M. Backonja, D. Walk, R. R. Edwards et al., “Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities,” The Clinical Journal of Pain, vol. 25, no. 7, pp. 641–647, 2009.
[47]
L. Garcia-Larrea, “Objective pain diagnostics: clinical neurophysiology,” Clinical Neurophysiology, vol. 42, no. 4, pp. 187–197, 2012.
[48]
E. A. Shipton, “New delivery systems for local anaesthetics,” Anesthesiology Research and Practice, vol. 2012, Article ID 289373, 6 pages, 2012.
[49]
S. M. Sammeta, S. R. K. Vaka, and S. N. Murthy, “Transdermal drug delivery enhanced by low voltage electropulsation (LVE),” Pharmaceutical Development and Technology, vol. 14, no. 2, pp. 159–164, 2009.
[50]
S. N. Murthy, S. M. Sammeta, and C. Bowers, “Magnetophoresis for enhancing transdermal drug delivery: mechanistic studies and patch design,” Journal of Controlled Release, vol. 148, no. 2, pp. 197–203, 2010.
[51]
E. A. Shipton, “New formulations of local anaesthetics,” Anesthesiology Research and Practice, vol. 2012, Article ID 546409, 11 pages, 2012.
[52]
D. Bautista and D. Julius, “Fire in the hole: pore dilation of the capsaicin receptor TRPV1,” Nature Neuroscience, vol. 11, no. 5, pp. 528–529, 2008.
[53]
E. de Paula, C. M. S. Cereda, G. R. Tofoli, M. Franz-Montan, L. F. Fraceto, and D. R. De Araújo, “Drug delivery systems for local anesthetics,” Recent Patents on Drug Delivery and Formulation, vol. 4, no. 1, pp. 23–34, 2010.
[54]
E. Tam and A. D. Furlan, “Transdermal lidocaine and ketamine for neuropathic pain: a study of effectiveness and tolerability,” The Open Neurology Journal, vol. 6, pp. 58–64, 2012.
[55]
A. B. O'Connor and R. H. Dworkin, “Treatment of neuropathic pain: an overview of recent guidelines,” The American Journal of Medicine, vol. 122, Supplement 10, pp. S22–S32, 2009.
[56]
M. C. Rowbotham, P. S. Davies, C. Verkempinck, and B. S. Galer, “Lidocaine patch: double-blind controlled study of a new treatment method for post-herpetic neuralgia,” Pain, vol. 65, no. 1, pp. 39–44, 1996.
[57]
L. Zilliox and J. W. Russell, “Treatment of diabetic sensory polyneuropathy,” Current Treatment Options in Neurology, vol. 13, no. 2, pp. 143–159, 2011.
[58]
C. Noto, M. Pappagallo, and A. Szallasi, “NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain,” Current Opinion in Investigational Drugs, vol. 10, no. 7, pp. 702–710, 2009.
[59]
W. R. Kennedy, G. F. Vanhove, S. P. Lu et al., “A randomized, controlled, open-label study of the long-term effects of NGX-4010, a high-concentration capsaicin patch, on epidermal nerve fiber density and sensory function in healthy volunteers,” Journal of Pain, vol. 11, no. 6, pp. 579–587, 2010.
[60]
S. Derry, R. Lloyd, R. A. Moore, and H. J. McQuay, “Topical capsaicin for chronic neuropathic pain in adults,” Cochrane Database of Systematic Reviews, no. 4, p. CD007393, 2009.
[61]
M. Gaspar, M. Bovaira, F. J. Carrera-Hueso, et al., “Efficacy of a topical treatment protocol with dimethyl sulfoxide 50% in type 1 complex regional pain syndrome,” Farmacia Hospitalaria, vol. 36, no. 5, pp. 385–391, 2012.
[62]
M. P. Flores, A. P. Castro, and J. S. Nascimento, “Topical analgesics,” Revista Brasileira de Anestesiologia, vol. 62, no. 2, pp. 242–252, 2012.
[63]
C. A. Heyneman, C. Lawless-Liday, and G. C. Wall, “Oral versus topical NSAIDs in rheumatic diseases: a comparison,” Drugs, vol. 60, no. 3, pp. 555–574, 2000.
[64]
C. M. Campbell, M. S. Kipnes, B. C. Stouch, et al., “Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy,” Pain, vol. 153, no. 9, pp. 1815–1823, 2012.
[65]
G. L. Moseley and K. Wiech, “The effect of tactile discrimination training is enhanced when patients watch the reflected image of their unaffected limb during training,” Pain, vol. 144, no. 3, pp. 314–319, 2009.
[66]
G. L. Moseley, N. M. Zalucki, and K. Wiech, “Tactile discrimination, but not tactile stimulation alone, reduces chronic limb pain,” Pain, vol. 137, no. 3, pp. 600–608, 2008.