In recent decades, a large body of research has focused on the role of nitric oxide (NO) in the development of cerebral vasospasm (CV) following subarachnoid hemorrhage (SAH). Literature searches were therefore conducted regarding the role of NO in cerebral vasospasm, specifically focusing on NO donors, reactive nitrogen species, and peroxynitrite in manifestation of vasospasm. Based off the assessment of available evidence, two competing theories are reviewed regarding the role of NO in vasospasm. One school of thought describes a deficiency in NO due to scavenging by hemoglobin in the cisternal space, leading to an NO signaling deficit and vasospastic collapse. A second hypothesis focuses on the dysfunction of nitric oxide synthase, an enzyme that synthesizes NO, and subsequent generation of reactive nitrogen species. Both theories have strong experimental evidence behind them and hold promise for translation into clinical practice. Furthermore, NO donors show definitive promise for preventing vasospasm at the angiographic and clinical level. However, NO augmentation may also cause systemic hypotension and worsen vasospasm due to oxidative distress. Recent evidence indicates that targeting NOS dysfunction, for example, through erythropoietin or statin administration, also shows promise at preventing vasospasm and neurotoxicity. Ultimately, the role of NO in neurovascular disease is complex. Neither of these theories is mutually exclusive, and both should be considered for future research directions and treatment strategies. 1. Introduction Subarachnoid hemorrhage (SAH) is a form of stroke that affects 28,000 individuals in North America each year [1]. A frequent cause of SAH is the rupture of an intracranial aneurysm, leading to extravasation of blood into the subarachnoid space. While aneurysmal SAH accounts for only 7% of all cerebrovascular accidents (CVAs), those that suffer SAH have an average age of 51 years, significantly younger than those with a thromboembolic or hemorrhagic stroke [1]. Due to the young age of these patients, they have great potential to return to their premorbid state and level of productivity, with successful intervention. However, even with endovascular or surgical repair of the offending aneurysm, those that survive the initial insult can still accumulate additional neurologic defects in the days and weeks post-hemorrhage. Enormous efforts to understand and prevent additional mortality following SAH led to the discovery of the phenomenon known as cerebral vasospasm (CV) [1]. CV refers to the constriction of smooth muscle
References
[1]
N. F. Kassell, T. Sasaki, A. R. T. Colohan, and G. Nazar, “Cerebral vasospasm following aneurysmal subarachnoid hemorrhage,” Stroke, vol. 16, no. 4, pp. 562–572, 1985.
[2]
J. Hansen-Schwartz, P. Vajkoczy, R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm: looking beyond vasoconstriction,” Trends in Pharmacological Sciences, vol. 28, no. 6, pp. 252–256, 2007.
[3]
R. M. Pluta, J. H. Zhang, J. Hansen-Schwartz et al., “Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought,” Neurological Research, vol. 31, no. 2, pp. 151–158, 2009.
[4]
R. M. Pluta, “Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment,” Pharmacology & Therapeutics, vol. 105, no. 1, pp. 23–56, 2005.
[5]
G. J. Velat, M. M. Kimball, J. D. Mocco, and B. L. Hoh, “Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta-analyses in the literature,” World Neurosurgery, vol. 76, no. 5, pp. 446–454, 2011.
[6]
J. P. Dreier, C. Drenckhahn, J. Woitzik, et al., “Spreading ischemia after aneurysmal subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 115, pp. 125–129, 2013.
[7]
S. Nishizawa, “The roles of early brain injury in cerebral vasospasm following subarachnoid hemorrhage: from clinical and scientific aspects,” Acta Neurochirurgica, vol. 115, pp. 207–211, 2013.
[8]
T. Sasaki and Y. Kikkawa, “Proposed mechanism of cerebral vasospasm: our hypothesis and current topics,” Acta Neurochirurgica, vol. 115, pp. 53–56, 2013.
[9]
M. K. Winkler, Y. Chassidim, S. Lublinsky, et al., “Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction,” Epilepsia, vol. 53, supplement 6, pp. 22–30, 2012.
[10]
U. F?rstermann and T. Münzel, “Endothelial nitric oxide synthase in vascular disease,” Circulation, vol. 113, no. 13, pp. 1708–1714, 2006.
[11]
M. Sabri, J. Ai, B. Knight et al., “Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 190–199, 2011.
[12]
L. Edvinsson and D. N. Krause, Cerebral Blood Flow and Metabolism, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2nd edition, 2002.
[13]
C. Nathan and Q.-W. Xie, “Nitric oxide synthases: roles, tolls, and controls,” Cell, vol. 78, no. 6, pp. 915–918, 1994.
[14]
S. Milstien and Z. Katusic, “Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function,” Biochemical and Biophysical Research Communications, vol. 263, no. 3, pp. 681–684, 1999.
[15]
S. M. Morris Jr. and T. R. Billiar, “New insights into the regulation of inducible nitric oxide synthesis,” American Journal of Physiology, vol. 266, no. 6, pp. E829–E839, 1994.
[16]
R. M. Pluta, B. G. Thompson, T. M. Dawson, S. H. Snyder, R. J. Boock, and E. H. Oldfield, “Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm,” Journal of Neurosurgery, vol. 84, no. 4, pp. 648–654, 1996.
[17]
K. Cosby, K. S. Partovi, J. H. Crawford et al., “Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation,” Nature Medicine, vol. 9, no. 12, pp. 1498–1505, 2003.
[18]
A. R. Fathi, R. M. Pluta, K. D. Bakhtian, M. Qi, and R. R. Lonser, “Reversal of cerebral vasospasm via intravenous sodium nitrite after subarachnoid hemorrhage in primates: laboratory investigation,” Journal of Neurosurgery, vol. 115, no. 6, pp. 1213–1220, 2011.
[19]
R. M. Pluta, E. H. Oldfield, K. D. Bakhtian et al., “Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers,” PLoS ONE, vol. 6, no. 1, Article ID e14504, 2011.
[20]
R. M. Pluta, A. Dejam, G. Grimes, M. T. Gladwin, and E. H. Oldfield, “Nitrite infusions to prevent delayed cerebral vasospasm in a primate model of subarachnoid hemorrhage,” Journal of the American Medical Association, vol. 293, no. 12, pp. 1477–1484, 2005.
[21]
R. E. Ayer and J. H. Zhang, “Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm,” Acta Neurochirurgica, vol. 104, pp. 33–41, 2008.
[22]
F. Marzatico, P. Gaetani, V. Silvani, D. Lombardi, E. Sinforiani, and R. Baena, “Experimental isobaric subarachnoid hemorrhage: regional mitochondrial function during the acute and late phase,” Surgical Neurology, vol. 34, no. 5, pp. 294–300, 1990.
[23]
R. Rodriguez y Baena, P. Gaetani, V. Silvani, G. Spanu, and F. Marzatico, “Effect of nimodipine on mitochondrial respiration in different rat brain areas after subarachnoid haemorrhage,” Acta Neurochirurgica, vol. 43, pp. 177–181, 1988.
[24]
F. Marzatico, P. Gaetani, R. Rodriguez y Baena, V. Silvani, P. Paoletti, and G. Benzi, “Bioenergetics of different brain areas after experimental subarachnoid hemorrhage in rats,” Stroke, vol. 19, no. 3, pp. 378–384, 1988.
[25]
K. Rejdak, A. Petzold, M. A. Sharpe et al., “Cerebrospinal fluid nitrite/nitrate correlated with oxyhemoglobin and outcome in patients with subarachnoid hemorrhage,” Journal of the Neurological Sciences, vol. 219, no. 1-2, pp. 71–76, 2004.
[26]
K. Takenaka, N. F. Kassell, P. L. Foley, K. S. Lee, and J. J. Marshall, “Oxyhemoglobin-induced cytotoxicity and arachidonic acid release in cultured bovine endothelial cells,” Stroke, vol. 24, no. 6, pp. 839–845, 1993.
[27]
J. M. C. Gutteridge, “Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides,” FEBS Letters, vol. 201, no. 2, pp. 291–295, 1986.
[28]
H. P. Misra and I. Fridovich, “The generation of superoxide radical during the autoxidation of hemoglobin,” The Journal of Biological Chemistry, vol. 247, no. 21, pp. 6960–6962, 1972.
[29]
P. J. Kuhlencordt, R. Gyurko, F. Han et al., “Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice,” Circulation, vol. 104, no. 4, pp. 448–454, 2001.
[30]
A. S. Dumont, R. J. Dumont, M. M. Chow et al., “Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation,” Neurosurgery, vol. 53, no. 1, pp. 123–135, 2003.
[31]
M. Kurzelewski, E. Czarnowska, and A. Ber?sewicz, “Superoxide- and nitric oxide-derived species mediate endothelial dysfunction, endothelial glycocalyx disruption, and enhanced neutrophil adhesion in the post-ischemic guinea-pig heart,” Journal of Physiology and Pharmacology, vol. 56, no. 2, pp. 163–178, 2005.
[32]
F. A. Sehba and J. B. Bederson, “Nitric oxide in early brain injury after subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 110, part 1, pp. 99–103, 2011.
[33]
F. A. Sehba, A. Y. Schwartz, I. Chereshnev, and J. B. Bederson, “Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 3, pp. 604–611, 2000.
[34]
W. H. Ng, S. Moochhala, T. T. Yeo, P. L. Ong, and P. Y. Ng, “Nitric oxide and subarachnoid hemorrhage: elevated levels in cerebrospinal fluid and their implications,” Neurosurgery, vol. 49, no. 3, pp. 622–627, 2001.
[35]
A. Khaldi, A. Zauner, M. Reinert, J. J. Woodward, and M. R. Bullock, “Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage,” Neurosurgery, vol. 49, no. 1, pp. 33–40, 2001.
[36]
M. Suzuki, H. Asahara, S. Endo et al., “Increased levels of nitrite/nitrate in the cerebrospinal fluid of patients with subarachnoid hemorrhage,” Neurosurgical Review, vol. 22, no. 2-3, pp. 96–98, 1999.
[37]
C. S. Jung, E. H. Oldfield, J. Harvey-White et al., “Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 107, no. 5, pp. 945–950, 2007.
[38]
A. Woszczyk, W. Deinsberger, and D. K. B?ker, “Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid haemorrhage,” Acta Neurochirurgica, vol. 145, no. 4, pp. 257–264, 2003.
[39]
A. K. Vellimana, E. Milner, T. D. Azad et al., “Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm,” Stroke, vol. 42, no. 3, pp. 776–782, 2011.
[40]
O. W. Sakowitz, S. Wolfrum, A. S. Sarrafzadeh, J. F. Stover, W. R. Lanksch, and A. W. Unterberg, “Temporal profiles of extracellular nitric oxide metabolites following aneurysmal subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 81, pp. 351–354, 2002.
[41]
F. Staub, R. Graf, P. Gabel, M. K?chling, N. Klug, and W.-D. Heiss, “Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage,” Neurosurgery, vol. 47, no. 5, pp. 1106–1116, 2000.
[42]
A. Khaldi, A. Zauner, M. Reinert, J. J. Woodward, and M. R. Bullock, “Measurement of nitric oxide and brain tissue oxygen tension in patients after severe subarachnoid hemorrhage,” Neurosurgery, vol. 49, no. 1, pp. 33–40, 2001.
[43]
M. Reinert, A. Zauner, A. Khaldi, et al., “Microdialysis nitric oxide levels and brain tissue oxygen tension in patients with subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 77, pp. 155–157, 2001.
[44]
F. Staub, R. Graf, P. Gabel, M. K?chling, N. Klug, and W.-D. Heiss, “Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage,” Neurosurgery, vol. 47, no. 5, pp. 1106–1116, 2000.
[45]
R. M. Starke, G. H. Kim, R. J. Komotar et al., “Endothelial nitric oxide synthase gene single-nucleotide polymorphism predicts cerebral vasospasm after aneurysmal subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 6, pp. 1204–1211, 2008.
[46]
N. U. Ko, P. Rajendran, H. Kim et al., “Endothelial nitric oxide synthase polymorphism (-786T→C) and increased risk of angiographic vasospasm after aneurysmal subarachnoid hemorrhage,” Stroke, vol. 39, no. 4, pp. 1103–1108, 2008.
[47]
J. Claassen, G. L. Bernardini, K. Kreiter et al., “Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage,” Stroke, vol. 32, no. 9, pp. 2012–2020, 2001.
[48]
C. D. Reiter, X. Wang, J. E. Tanus-Santos et al., “Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease,” Nature Medicine, vol. 8, no. 12, pp. 1383–1389, 2002.
[49]
T. Tanishima, “Cerebral vasospasm: contractile activity of hemoglobin in isolated canine basilar arteries,” Journal of Neurosurgery, vol. 53, no. 6, pp. 787–793, 1980.
[50]
D. A. Wink and J. B. Mitchell, “Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide,” Free Radical Biology and Medicine, vol. 25, no. 4-5, pp. 434–456, 1998.
[51]
J. F. Clark, M. Reilly, and F. R. Sharp, “Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: a contributor to subarachnoid hemorrhage-induced vasospasm,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 4, pp. 472–478, 2002.
[52]
T. S. Tierney, G. Pradilla, P. P. Wang, R. E. Clatterbuck, and R. J. Tamargo, “Intracranial delivery of the nitric oxide donor diethylenetriamine/nitric oxide from a controlled-release polymer: toxicity in cynomolgus monkeys,” Neurosurgery, vol. 58, no. 5, pp. 952–960, 2006.
[53]
M. Sabri, J. Ai, P. A. Marsden, and R. L. Macdonald, “Simvastatin re-couples dysfunctional endothelial nitric oxide synthase in experimental subarachnoid hemorrhage,” PLoS ONE, vol. 6, no. 2, Article ID e17062, 2011.
[54]
K. Sydow and T. Münzel, “ADMA and oxidative stress,” Atherosclerosis Supplements, vol. 4, no. 4, pp. 41–51, 2003.
[55]
G. S. Allen, “Cerebral arterial spasm. Part 8: the treatment of delayed cerebral arterial spasm in human being,” Surgical Neurology, vol. 6, no. 2, pp. 71–80, 1976.
[56]
J. Pachl, P. Haninec, T. Tencer et al., “The effect of subarachnoid sodium nitroprusside on the prevention of vasospasm in subarachnoid haemorrhage,” Acta Neurochirurgica, no. 95, pp. 141–145, 2005.
[57]
J. E. Thomas and G. McGinnis, “Safety of intraventricular sodium nitroprusside and thiosulfate for the treatment of cerebral vasospasm in the intensive care unit setting,” Stroke, vol. 33, no. 2, pp. 486–492, 2002.
[58]
R. Kumar, A. Pathak, S. N. Mathuriya, and N. Khandelwal, “Intraventricular sodium nitroprusside therapy: a future promise for refractory subarachnoid hemorrhage-induced vasospasm,” Neurology India, vol. 51, no. 2, pp. 197–202, 2003.
[59]
A. Raabe, H. Vatter, M. Zimmermann, and V. Seifert, “Reversal of tissue hypoxia by a single intraventricular dose of sodium nitroprusside in a patient with severe medically refractory cerebral vasospasm after subarachnoid haemorrhage,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 72, no. 1, pp. 123–124, 2002.
[60]
A. Raabe, M. Zimmermann, M. Setzer et al., “Effect of intraventricular sodium nitroprusside on cerebral hemodynamics and oxygenation in poor-grade aneurysm patients with severe, medically refractory vasospasm,” Neurosurgery, vol. 50, no. 5, pp. 1006–1014, 2002.
[61]
A. Pathak, S. N. Mathuriya, N. Khandelwal, and K. Verma, “Intermittent low dose intrathecal sodium nitroprusside therapy for treatment of symptomatic aneurysmal SAH-induced vasospasm,” British Journal of Neurosurgery, vol. 17, no. 4, pp. 306–310, 2003.
[62]
R. L. Macdonald, Z.-D. Zhang, D. Curry et al., “Intracisternal sodium nitroprusside fails to prevent vasospasm in nonhuman primates,” Neurosurgery, vol. 51, no. 3, pp. 761–770, 2002.
[63]
K. Nakao, H. Murata, K. Kanamaru, and S. Waga, “Effects of nitroglycerin on vasospasm and cyclic nucleotides in a primate model of subarachnoid hemorrhage,” Stroke, vol. 27, no. 10, pp. 1882–1888, 1996.
[64]
J. G. Frazee, S. L. Giannotta, and W. E. Stern, “Intravenous nitroglycerin for the treatment of chronic cerebral vasoconstriction in the primate,” Journal of Neurosurgery, vol. 55, no. 6, pp. 865–868, 1981.
[65]
K. Kanamaru, B. K. A. Weir, J. M. Findlay, C. A. Krueger, and D. A. Cook, “Pharmacological studies on relaxation of spastic primate cerebral arteries in subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 71, no. 6, pp. 909–915, 1989.
[66]
S. R. Ramdurg, A. Suri, D. Gupta et al., “Magnetic resonance imaging evaluation of subarachnoid hemorrhage in rats and the effects of intracisternal injection of papaverine and nitroglycerine in the management of cerebral vasospasm,” Neurology India, vol. 58, no. 3, pp. 377–383, 2010.
[67]
Y. Tanaka, T. Masuzawa, M. Saito, et al., “Combined administration of fasudil hydrochloride and nitroglycerin for treatment of cerebral vasospasm,” Acta Neurochirurgica, vol. 77, pp. 205–207, 2001.
[68]
Y. Ito, E. Isotani, Y. Mizuno, H. Azuma, and K. Hirakawa, “Effective improvement of the cerebral vasospasm after subarachnoid hemorrhage with low-dose nitroglycerin,” Journal of Cardiovascular Pharmacology, vol. 35, no. 1, pp. 45–50, 2000.
[69]
W. S. Lesley, A. Lazo, J. C. Chaloupka, and J. B. Weigele, “Successful treatment of cerebral vasospasm by use of transdermal nitroglycerin ointment (Nitropaste),” American Journal of Neuroradiology, vol. 24, no. 6, pp. 1234–1236, 2003.
[70]
M. Reinert, R. Wiest, L. Barth, R. Andres, C. Ozdoba, and R. Seiler, “Transdermal nitroglycerin in patients with subarachnoid hemorrhage,” Neurological Research, vol. 26, no. 4, pp. 435–439, 2004.
[71]
A. R. Fathi, K. D. Bakhtian, and R. M. Pluta, “The role of nitric oxide donors in treating cerebral vasospasm after subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 110, part 1, pp. 93–97, 2011.
[72]
O. M. Qahwash, A. Alaraj, V. Aletich, F. T. Charbel, and S. Amin-Hanjani, “Safety of early endovascular catheterization and intervention through extracranial-intracranial bypass grafts,” Journal of Neurosurgery, vol. 116, no. 1, pp. 201–207, 2012.
[73]
A. R. Fathi, S. Marbacher, T. Graupner et al., “Continuous intrathecal glyceryl trinitrate prevents delayed cerebral vasospasm in the single-SAH rabbit model in vivo,” Acta Neurochirurgica, vol. 153, no. 8, pp. 1669–1675, 2011.
[74]
E. W. Wolf, A. Banerjee, J. Soble-Smith, F. C. Dohan Jr., R. P. White, and J. T. Robertson, “Reversal of cerebral vasospasm using an intrathecally administered nitric oxide donor,” Journal of Neurosurgery, vol. 89, no. 2, pp. 279–288, 1998.
[75]
V. Malik, V. V. Holobotovskyy, J. K. Phillips, D. J. Mckitrick, and L. F. Arnolda, “Intrathecal cGMP elicits pressor responses and maintains mean blood pressure during haemorrhage in anaesthetized rats,” The Journal of Physiology, vol. 581, no. 2, pp. 543–552, 2007.
[76]
B. H. Han, A. K. Vellimana, M.-L. Zhou, et al., “Phosphodiesterase 5 inhibition attenuates cerebral vasospasm and improves functional recovery after experimental subarachnoid hemorrhage,” Neurosurgery, vol. 70, no. 1, pp. 178–187, 2012.
[77]
E. Koktekir, Y. Erdem, M. Akif Bayar, C. Gokcek, M. Karatay, and C. Kilic, “A new approach to the treatment of cerebral vasospasm: the angiographic effects of tadalafil on experimental vasospasm,” Acta Neurochirurgica, vol. 152, no. 3, pp. 463–469, 2010.
[78]
D. S. Bredt, C. D. Ferris, and S. H. Snyder, “Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites,” The Journal of Biological Chemistry, vol. 267, no. 16, pp. 10976–10981, 1992.
[79]
S. Dimmeler, E. Dernbach, and A. M. Zeiher, “Phosphorylation of the endothelial nitric oxide synthase at Ser-1177 is required for VEGF-induced endothelial cell migration,” FEBS Letters, vol. 477, no. 3, pp. 258–262, 2000.
[80]
P. F. Mount, B. E. Kemp, and D. A. Power, “Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 2, pp. 271–279, 2007.
[81]
M. J. McGirt, G. Pradilla, F. G. Legnani et al., “Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm,” Neurosurgery, vol. 58, no. 5, pp. 945–951, 2006.
[82]
T. Sugawara, V. Jadhav, R. Ayer, and J. Zhang, “Simvastatin attenuates cerebral vasospasm and improves outcomes by upregulation of PI3K/Akt pathway in a rat model of subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 102, pp. 391–394, 2008.
[83]
M.-Y. Tseng, M. Czosnyka, H. Richards, J. D. Pickard, and P. J. Kirkpatrick, “Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage,” Stroke, vol. 36, no. 8, pp. 1627–1632, 2005.
[84]
A. H. Kramer, “Statins in the management of aneurysmal subarachnoid hemorrhage: an overview of animal research, observational studies, randomized controlled trials and meta-analyses,” Acta Neurochirurgica, vol. 110, part 2, pp. 193–201, 2011.
[85]
M. Y. Tseng, “Summary of evidence on immediate statins therapy following aneurysmal subarachnoid hemorrhage,” Neurocritical Care, vol. 15, no. 2, pp. 298–301, 2011.
[86]
A. H. Kramer and J. J. Fletcher, “Statins in the management of patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis,” Neurocritical Care, vol. 12, no. 2, pp. 285–296, 2010.
[87]
A. V. R. Santhanam and Z. S. Katusic, “Erythropoietin and cerebral vascular protection: role of nitric oxide,” Acta Pharmacologica Sinica, vol. 27, no. 11, pp. 1389–1394, 2006.
[88]
A. V. R. Santhanam, L. A. Smith, M. Akiyama, A. G. Rosales, K. R. Bailey, and Z. S. Katusic, “Role of endothelial NO synthase phosphorylation in cerebrovascular protective effect of recombinant erythropoietin during subarachnoid hemorrhage-induced cerebral vasospasm,” Stroke, vol. 36, no. 12, pp. 2731–2737, 2005.
[89]
M. Y. Tseng, P. J. Hutchinson, H. K. Richards et al., “Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a phase II randomized, double-blind, placebo-controlled trial. Clinical article,” Journal of Neurosurgery, vol. 111, no. 1, pp. 171–180, 2009.
[90]
M. Y. Tseng, P. J. Hutchinson, and P. J. Kirkpatrick, “Interaction of neurovascular protection of erythropoietin with age, sepsis, and statin therapy following aneurysmal subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 112, no. 6, pp. 1235–1239, 2010.
[91]
J. D. Turner, A. Mammis, and C. J. Prestigiacomo, “Erythropoietin for the treatment of subarachnoid hemorrhage: a review,” World Neurosurgery, vol. 73, no. 5, pp. 500–507, 2010.
[92]
T. A. Sullivan, E. E. Geisert, J. P. Templeton, and T. S. Rex, “Dose-dependent treatment of optic nerve crush by exogenous systemic mutant erythropoietin,” Experimental Eye Research, vol. 96, no. 1, pp. 36–41, 2012.
[93]
Z. P. Wang, H. S. Chen, and F. X. Wang, “Influence of plasma and cerebrospinal fluid levels of endothelin-1 and No in reducing cerebral vasospasm after subarachnoid hemorrhage during treatment with mild hypothermia, in a dog model,” Cell Biochemistry and Biophysics, vol. 61, no. 1, pp. 137–143, 2011.
[94]
K. Osuka, Y. Watanabe, M. Yasuda, and M. Takayasu, “Adiponectin activates endothelial nitric oxide synthase through AMPK signaling after subarachnoid hemorrhage,” Neuroscience Letters, vol. 514, no. 1, pp. 2–5, 2012.
[95]
V. G. Khurana, L. A. Smith, T. A. Baker, D. Eguchi, T. O'Brien, and Z. S. Katusic, “Protective vasomotor effects of in vivo recombinant endothelial nitric oxide synthase gene expression in a canine model of cerebral vasospasm,” Stroke, vol. 33, no. 3, pp. 782–789, 2002.
[96]
H. Onoue, M. Tsutsui, L. Smith, A. Stelter, T. O'Brien, and Z. S. Katusic, “Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery after experimental subarachnoid hemorrhage,” Stroke, vol. 29, no. 9, pp. 1959–1966, 1998.
[97]
M. Stoodley, C. C. Weihl, Z.-D. Zhang et al., “Effect of adenovirus-mediated nitric oxide synthase gene transfer on vasospasm after experimental subarachnoid hemorrhage,” Neurosurgery, vol. 46, no. 5, pp. 1193–1203, 2000.
[98]
V. G. Khurana, L. A. Smith, D. A. Weiler, et al., “Adenovirus-mediated gene transfer to human cerebral arteries,” Journal of Cerebral Blood Flow & Metabolism, vol. 20, no. 9, pp. 1360–1371, 2000.
[99]
M. Tsutsui, H. Onoue, Y. Iida, L. Smith, T. O'Brien, and Z. S. Katusic, “Effects of recombinant eNOS gene expression on reactivity of small cerebral arteries,” American Journal of Physiology, vol. 278, no. 2, pp. H420–H427, 2000.
[100]
N. Egemen, R. K. Turker, U. Sanlidilek et al., “The effect of intrathecal sodium nitroprusside on severe chronic vasospasm,” Neurological Research, vol. 15, no. 5, pp. 310–315, 1993.
[101]
L. F. Hirsh, “Intra-arterial nitroprusside treatment of acute experimental vasospasm,” Stroke, vol. 11, no. 6, pp. 601–605, 1980.
[102]
C. S. Rothberg, B. Weir, and T. R. Overton, “Treatment of subarachnoid hemorrhage with sodium nitroprusside and phenylephrine: an experimental study,” Neurosurgery, vol. 5, no. 5, pp. 588–595, 1979.
[103]
J. E. Thomas and R. H. Rosenwasser, “Reversal of severe cerebral vasospasm in three patients after aneurysmal subarachnoid hemorrhage: initial observations regarding the use of intraventricular sodium nitroprusside in humans,” Neurosurgery, vol. 44, no. 1, pp. 48–58, 1999.
[104]
J. E. Thomas, R. H. Rosenwasser, R. A. Armonda, J. Harrop, W. Mitchell, and I. Galaria, “Safety of intrathecal sodium nitroprusside for the treatment and prevention of refractory cerebral vasospasm and ischemia in humans,” Stroke, vol. 30, no. 7, pp. 1409–1416, 1999.
[105]
G. Pradilla, Q.-A. Thai, F. G. Legnani et al., “Delayed intracranial delivery of a nitric oxide donor from a controlled-release polymer prevents experimental cerebral vasospasm in rabbits,” Neurosurgery, vol. 55, no. 6, pp. 1393–1400, 2004.
[106]
A. H. Kramer, “Statins in the management of aneurysmal subarachnoid hemorrhage—not (yet) a standard of care,” Stroke, vol. 40, no. 3, pp. e80–e82, 2009.