Background. Intracranial artery dissections are rare and many controversies exist about treatment options. The aim of this study was to evaluate the efficacy and safety of the endovascular approach in patients with an intracranial dissection presenting with different symptoms. Methods. We prospectively evaluated the clinical features and treatment outcomes of 30 patients who had angiographically confirmed nontraumatic intracranial dissections over 4 years. Patients were followed up for 17 months, and their final outcomes were assessed by the modified Rankin Score (mRS) and angiography. Results. Sixteen (53.3%) patients had a dissection of the anterior circulation, whereas 14 (46.7%) had a posterior circulation dissection. Overall, 83.3% of the patients suffered a subarachnoid hemorrhage (SAH). Grade IV Hunt and Hess score was seen in 32% of the SAH presenting cases. Parent artery occlusion (PAO) with coil embolization was used in 70% of the cases. The prevalence of overall procedural complications was 23.3%, and all were completely resolved at the end of follow-up. No evidence of in-stent occlusion/stenosis or rebleeding was observed in our cases during follow-up. Angiography results improved more frequently in the PAO with coil embolization group (100%) than in the stent-only-treated group (88.9%) ( ) and the unruptured dissection group (5/5, 100%) in comparison with the group that presented with SAH (95.8%) ( ). Conclusion. Favorable outcomes were achieved following an endovascular approach for symptomatic ruptured or unruptured dissecting aneurysms. However, the long-term efficacy and durability of these procedures remain to be determined in a larger series. 1. Introduction Arterial dissections are delineated by sudden disruption of the endothelium, the intima, and the internal elastic lamina with subsequent influx of circulating blood into the media. The pathogenesis of most intracranial artery dissections has been debated, and their etiology involves both extrinsic and intrinsic factors as well as defective repair mechanisms. Some of the factors associated with arterial dissections include hypertension, smoking, inflammatory diseases, genetic predisposition, fibromuscular dysplasia, collagen disease, and trauma [1]. Symptoms in patients with intracranial dissection can be related either to the mass effect, ischemia, or subarachnoid hemorrhage (SAH), or, in rare cases, to a combination of different presenting symptoms [2, 3] that can be described by the Mizutani et al. [4] classification of dissection pathomechanisms. A dissection diagnosis is
References
[1]
M. Yamada, Y. Miyasaka, S. Yagishita, K. Fujii, T. Yoshimoto, and H. H. Batjer, “Dissecting aneurysm of the intracranial vertebral artery associated with proximal focal degeneration of the elastica. A comparative pathological study of the vertebral artery in patients with and without aneurysms,” Surgical Neurology, vol. 60, no. 5, pp. 431–437, 2003.
[2]
C.-H. Kim, Y.-J. Son, S. H. Paek et al., “Clinical analysis of vertebrobasilar dissection,” Acta Neurochirurgica, vol. 148, no. 4, pp. 395–404, 2006.
[3]
T. Krings, S. Geibprasert, and K. G. terBrugge, “Pathomechanisms and treatment of pediatric aneurysms,” Child's Nervous System, vol. 26, no. 10, pp. 1309–1318, 2010.
[4]
T. Mizutani, Y. Miki, H. Kojima, and H. Suzuki, “Proposed classification of nonatherosclerotic cerebral fusiform and dissecting aneurysms,” Neurosurgery, vol. 45, no. 2, pp. 253–260, 1999.
[5]
B. M. Kim, Y. S. Shin, S.-H. Kim et al., “Incidence and risk factors of recurrence after endovascular treatment of intracranial vertebrobasilar dissecting aneurysms,” Stroke, vol. 42, no. 9, pp. 2425–2430, 2011.
[6]
Y. Yoshimoto and S. Wakai, “Unruptured intracranial vertebral artery dissection: clinical course and serial radiographic imagings,” Stroke, vol. 28, no. 2, pp. 370–374, 1997.
[7]
T. Shimoji, K. Bando, K. Nakajima, and K. Ito, “Dissecting aneurysm of the vertebral artery. Report of seven cases and angiographic findings,” Journal of Neurosurgery, vol. 61, no. 6, pp. 1038–1046, 1984.
[8]
T. Hosoya, M. Adachi, K. Yamaguchi, T. Haku, T. Kayama, and T. Kato, “Clinical and neuroradiological features of intracranial vertebrobasilar artery dissection,” Stroke, vol. 30, no. 5, pp. 1083–1090, 1999.
[9]
H. Ohkuma, S. Suzuki, and K. Ogane, “Dissecting aneurysms of intracranial carotid circulation,” Stroke, vol. 33, no. 4, pp. 941–947, 2002.
[10]
A. H. Friedman and C. G. Drake, “Subarachnoid hemorrhage from intracranial dissecting aneurysm,” Journal of Neurosurgery, vol. 60, no. 2, pp. 325–334, 1984.
[11]
H. Yonas, D. Agamanolis, Y. Takaoka, and R. J. White, “Dissecting intracranial aneurysms,” Surgical Neurology, vol. 8, no. 6, pp. 407–415, 1977.
[12]
E. Pozzati, R. Padovani, A. Fabrizi, L. Sabattini, and G. Gaist, “Benign arterial dissections of the posterior circulation,” Journal of Neurosurgery, vol. 75, no. 1, pp. 69–72, 1991.
[13]
S. E. Kasner, L. L. Hankins, P. Bratina, and L. B. Morgenstern, “Magnetic resonance angiography demonstrates vascular healing of carotid and vertebral artery dissections,” Stroke, vol. 28, no. 10, pp. 1993–1997, 1997.
[14]
J. Chiras, S. Marciano, J. V. Molina, J. Touboul, B. Poirier, and J. Bories, “Spontaneous dissecting aneurysm of the extracranial vertebral artery (20 cases),” Neuroradiology, vol. 27, no. 4, pp. 327–333, 1985.
[15]
J. M. Mathis, J. D. Barr, C. A. Jungreis et al., “Temporary balloon test occlusion of the internal carotid artery: experience in 500 cases,” American Journal of Neuroradiology, vol. 16, no. 4, pp. 749–754, 1995.
[16]
D. S. Rosen and R. L. Macdonald, “Subarachnoid hemorrhage grading scales: a systematic review,” Neurocritical Care, vol. 2, no. 2, pp. 110–118, 2005.
[17]
R. Zweifler and G. Silverboard, “Arterial dissections,” in Stroke: Pathophysiology, Diagnosis and Management, J. P. Mohr, D. W. Choi, J. C. Grotta, B. Weir, and P. A. Wolff, Eds., p. 561, Churchill Livingstone, Philadelphia, Pa, USA, 2004.
[18]
J. Y. Ahn, I. B. Han, T. G. Kim et al., “Endovascular treatment of intracranial vertebral artery dissections with stent placement or stent-assisted coiling,” American Journal of Neuroradiology, vol. 27, no. 7, pp. 1514–1520, 2006.
[19]
Y. Kai, J. Hamada, M. Morioka, T. Todaka, T. Mizuno, and Y. Ushio, “Treatment of dissecting vertebral aneurysm,” Interventional Neuroradiology, vol. 7, no. 1, pp. 155–160, 2001.
[20]
I. Yamaura, E. Tani, M. Yokota et al., “Endovascular treatment of ruptured dissecting aneurysms aimed at occlusion of the dissected site by using Guglielmi detachable coils,” Journal of Neurosurgery, vol. 90, no. 5, pp. 853–856, 1999.
[21]
J. A. Santos-Franco, M. Zenteno, and A. Lee, “Dissecting aneurysms of the vertebrobasilar system. A comprehensive review on natural history and treatment options,” Neurosurgical Review, vol. 31, no. 2, pp. 131–140, 2008.
[22]
J. Sedat, Y. Chau, M. H. Mahagne, V. Bourg, M. Lonjon, and P. Paquis, “Dissection of the posteroinferior cerebellar artery: clinical characteristics and long-term follow-up in five cases,” Cerebrovascular Diseases, vol. 24, no. 2-3, pp. 183–190, 2007.
[23]
W. Yoon, J. J. Seo, T. S. Kim, H. M. Do, M. V. Jayaraman, and M. P. Marks, “Dissection of the V4 segment of the vertebral artery: clinicoradiologic manifestations and endovascular treatment,” European Radiology, vol. 17, no. 4, pp. 983–993, 2007.
[24]
M. Shibukawa, S. Sakamoto, Y. Kiura, T. Matsushige, and K. Kurisu, “Ruptured vertebral artery dissecting aneurysms treated with endovascular treatment,” Hiroshima Journal of Medical Sciences, vol. 58, no. 2-3, pp. 55–60, 2009.
[25]
F. C. Albuquerque, D. J. Fiorella, P. P. Han, V. R. Deshmukh, L. J. Kim, and C. G. McDougall, “Endovascular management of intracranial vertebral artery dissecting aneurysms,” Neurosurgical Focus, vol. 18, no. 2, p. E3, 2005.
[26]
H. Ohta, S. K. Natarajan, E. F. Hauck et al., “Endovascular stent therapy for extracranial and intracranial carotid artery dissection: single-center experience,” Journal of Neurosurgery, vol. 115, no. 1, pp. 91–100, 2011.
[27]
M. J. Binning, A. A. Khalessi, A. H. Siddiqui, L. N. Hopkins, and E. I. Levy, “Stent placement for the treatment of a symptomatic intracranial arterial dissection in an adolescent: case report,” Journal of Neurosurgery: Pediatrics, vol. 6, no. 2, pp. 154–158, 2010.
[28]
J. Y. Ahn, S. S. Chung, B. H. Lee et al., “Treatment of spontaneous arterial dissections with stent placement for preservation of the parent artery,” Acta Neurochirurgica, vol. 147, no. 3, pp. 265–273, 2005.
[29]
R. Bourcier, C. Papagiannaki, R. Bibi, J. P. Cottier, and D. Herbreteau, “Intracranial dissection: incidence and long term endovascular treatment results of a not so rare disease,” Clinical Neurology and Neurosurgery, 2012.
[30]
R. Anxionnat, J. F. de Melo Neto, S. Bracard et al., “Treatment of hemorrhagic intracranial dissections,” Neurosurgery, vol. 53, no. 2, pp. 289–301, 2003.
[31]
Y. Yonekawa, D. Zumofen, H.-G. Imhof, P. Roth, and N. Khan, “Hemorrhagic cerebral dissecting aneurysms: surgical treatments and results,” Acta Neurochirurgica, Supplementum, vol. 103, pp. 61–69, 2008.
[32]
E. Uhl, R. Schmid-Elsaesser, H.-J. Steiger, and N. Dorsch, “Ruptured intracranial dissecting aneurysms: management considerations with a focus on surgical and endovascular techniques to preserve arterial continuity,” Acta Neurochirurgica, vol. 145, no. 12, pp. 1073–1084, 2003.
[33]
T. Araki, M. Ouchi, and Y. Ikeda, “A case of anterior cerebral artery dissecting aneurysm,” Neurological Surgery, vol. 24, no. 1, pp. 87–91, 1996.
[34]
S. Sato, K. Toyoda, H. Matsuoka et al., “Isolated anterior cerebral artery territory infarction: dissection as an etiological mechanism,” Cerebrovascular Diseases, vol. 29, no. 2, pp. 170–177, 2010.
[35]
M. Ruecker, M. Furtner, M. Knoflach et al., “Basilar artery dissection: series of 12 consecutive cases and review of the literature,” Cerebrovascular Diseases, vol. 30, no. 3, pp. 267–276, 2010.