To verify whether the C825T polymorphism of the GNB3 influences the response to neuropsychological tests, mini-mental state examination, digit span (DS), immediate and delayed prose memory, memory with interference at 10 and 30 seconds (MI 10 and 30), trail making tests (TMTs) A and B, abstraction task, verbal fluency (VF) test, figure drawing and copying, overlapping figures test and clock test were performed in 220 elderly men and women free from clinical dementia and from neurological and psychiatric diseases randomly taken from the Italian general population and analysed across the C825T polymorphism. The performance of DS, immediate and delayed prose memory, VF, and TMTs was worse in subjects who were TT for the polymorphism in comparison to the C-carriers. The performance of all tests declined with age. In the case of DS, immediate and delayed prose memory, MI 10 and VF, this trend was maintained in the C-carriers but not in TT. In the case of prose memory, of memory with interference, and of VF, schooling reduced the detrimental interaction between age and genotype. The C825T polymorphism of GNB3 gene therefore influences memory and verbal fluency, being additive to the effects of age and partially mitigated by schooling. 1. Introduction The heteromeric guanine nucleotide-binding proteins (G-proteins) are composed of α, β, and γ subunits. The β subunit is a regulator of signal transduction receptors and effectors. The C825T single-nucleotide polymorphism in the guanine nucleotide-binding protein beta polypeptide 3 (GNB3) gene encoding for β3 subunit located on chromosome 12p13 has been found to be associated with essential hypertension [1] and obesity [2]. In recent literature, this polymorphism has also been associated with neurological and psychic conditions such as depression [3–6], dementia [7], dependence [8], dyskinesia [9], and neurologically determined functional diseases [10, 11] and with response to antidepressant [5] or antipsychotic [12] drugs. Nevertheless, all these studies have been performed on psychiatric patients or in subsets of selected subjects. To our knowledge, no one of the studies dealing with this association was population based. Neuropsychological tests allow standard evaluation of cognitive functions. Memory, language, and executive functions can be assessed and quantified by numeric scores. General cognitive assessment can be performed by means of mini-mental state examination [13]. A comprehensive neuropsychological battery of validated paper and pencil tests is also relevant for exploring focally the areas of
References
[1]
Y. Dong, H. Zhu, X. Wang et al., “Obesity reveals an association between blood pressure and the G-protein β3-subunit gene: a study of female dizygotic twins,” Pharmacogenetics, vol. 14, no. 7, pp. 419–427, 2004.
[2]
E. Casiglia, V. Tikhonoff, S. Caffi et al., “Effects of the C825T polymorphism of the GNB3 gene on body adiposity and blood pressure in fertile and menopausal women: a population-based study,” Journal of Hypertension, vol. 26, no. 2, pp. 238–243, 2008.
[3]
H.-J. Lee, J.-H. Cha, B.-J. Ham et al., “Association between a G-protein β3 subunit gene polymorphism and the symptomatology and treatment responses of major depressive disorders,” Pharmacogenomics Journal, vol. 4, no. 1, pp. 29–33, 2004.
[4]
M. J. V. Wilkie, D. Smith, I. C. Reid et al., “A splice site polymorphism in the G-protein β subunit influences antidepressant efficacy in depression,” Pharmacogenetics and Genomics, vol. 17, no. 3, pp. 207–215, 2007.
[5]
S. Anttila, K. Huuhka, M. Huuhka et al., “Interaction between TPH1 and GNB3 genotypes and electroconvulsive therapy in major depression,” Journal of Neural Transmission, vol. 114, no. 4, pp. 461–468, 2007.
[6]
H.-J. Lee, S.-M. Sung, C.-S. Han et al., “G-protein β3 subunit C825T polymorphism tends to be associated with seasonal variation in young male college students,” Neuropsychobiology, vol. 52, no. 3, pp. 135–139, 2005.
[7]
M. J. Bullido, M. C. Ramos, A. Ruiz-Gómez et al., “Polymorphism in genes involved in adrenergic signaling associated with Alzheimer's,” Neurobiology of Aging, vol. 25, no. 7, pp. 853–859, 2004.
[8]
A. P. Prestes, F. Z. C. Marques, M. H. Hutz, and C. H. D. Bau, “The GNB3 C825T polymorphism and depression among subjects with alcohol dependence,” Journal of Neural Transmission, vol. 114, no. 4, pp. 469–472, 2007.
[9]
M.-S. Lee, “Role of genetic polymorphisms related to neurotransmitters and cytochrome P-450 enzymes in response to antidepressants,” Drugs of Today, vol. 43, no. 8, pp. 569–581, 2007.
[10]
G. Holtmann, W. Siffert, S. Haag et al., “-protein β3 subunit 825 CC genotype is associated with unexplained (functional) dyspepsia,” Gastroenterology, vol. 126, no. 4, pp. 971–979, 2004.
[11]
M. Lelonek, T. Pietrucha, A. Stanczyk, and J. H. Goch, “Vasovagal syncope patients and the C825T GNB3 polymorphism,” Anadolu Kardiyoloji Dergisi, vol. 7, no. 1, pp. 206–208, 2007.
[12]
R. P. Souza, V. De Luca, G. Muscettola et al., “Association of antipsychotic induced weight gain and body mass index with GNB3 gene: a meta-analysis,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 8, pp. 1848–1853, 2008.
[13]
E. Magni, G. Binetti, A. Bianchetti, R. Rozzini, and M. Trabucchi, “Mini-mental state examination: a normative study in Italian elderly population,” European Journal of Neurology, vol. 3, no. 3, pp. 198–202, 1996.
[14]
S. Mondini, D. Mapelli, A. Vestri, and P. S. Bisiacchi, Esame NeuropsicoLogico Breve: Una Batteria Di Test Per Lo Screening NeuropsicoLogico, Cortina, Milano, Italia, 2003.
[15]
D. Wechsler, The Measurement of Adult Intelligence, Williams & Witkins, Baltimore, Md, USA, 1939.
[16]
R. M. Reitan, “Validity of the Trail Making test as an indicator of organic brain damage,” Perceptual & Motor Skills, vol. 8, pp. 271–276, 1958.
[17]
M. D. Lezak, Neuropsychological Assessment, Oxford University Press, Oxford, UK, 1995.
[18]
B. C. M. Stephan, T. Kurth, F. E. Matthews, C. Brayne, and C. Dufouil, “Dementia risk prediction in the population: are screening models accurate?” Nature Reviews Neurology, vol. 6, no. 6, pp. 318–326, 2010.
[19]
D. Osterweil, P. Mulford, K. Syndulko, and M. Martin, “Cognitive function in old and very old residents of a residential facility: relationship to age, education, and dementia,” Journal of the American Geriatrics Society, vol. 42, no. 7, pp. 766–773, 1994.
[20]
E. Casiglia, G. Basso, F. Guglielmi et al., “German origin clusters for high cardiovascular risk in an Italian enclave,” International Heart Journal, vol. 46, no. 3, pp. 489–500, 2005.
[21]
E. Casiglia, V. Tikhonoff, L. Schiavon et al., “Skinfold thickness and blood pressure across C-344T polymorphism of CYP11B2 gene,” Journal of Hypertension, vol. 25, no. 9, pp. 1828–1833, 2007.
[22]
E. Casiglia, V. Tikhonoff, S. Caffi et al., “Glycaemic fall after a glucose load. A population-based study,” Nutrition, Metabolism & Cardiovascular Diseases, vol. 20, no. 10, pp. 727–733, 2009.
[23]
A. Bianchi and M. Dai Prà, “Twenty years after Spinnler and Tognoni: new instruments in the Italian neuropsychologist's toolbox,” Neurological Sciences, vol. 29, no. 4, pp. 209–217, 2008.
[24]
G. A. Rose, H. Blackburn, R. F. Gillum, and R. J. Prineas, Cardiovascular Survey Methods, Annes 1: Classification of the Electrocardiogram for Population Studies, WHO, Geneva, Switzerland, 2nd edition.
[25]
Y. Friedlander, J. D. Kark, S. Eisenberg, and Y. Stein, “Calculation of LDL-cholesterol from total cholesterol, triglyceride and HDL-cholesterol: a comparison of methods in the Jerusalem Lipid Research Clinic Prevalence Study,” Israel Journal of Medical Sciences, vol. 18, no. 12, pp. 1242–1252, 1982.
[26]
H. Schunkert, H.-W. Hense, A. D?ring, G. A. J. Riegger, and W. Siffert, “Association between a polymorphism in the G protein β3 subunit gene and lower renin and elevated diastolic blood pressure levels,” Hypertension, vol. 32, no. 3, pp. 510–513, 1998.
[27]
E. Magni, G. Binetti, A. Bianchetti, R. Rozzini, and M. Trabucchi, “Mini-mental state examination: a normative study in Italian elderly population,” European Journal of Neurology, vol. 3, no. 3, pp. 198–202, 1996.
[28]
J. T. E. Richardson, “Measures of short-term memory: a historical review,” Cortex, vol. 43, no. 5, pp. 635–650, 2007.
[29]
L. R. Peterson and A. Gentile, “Proactive interference as a function of time between tests,” Journal of Experimental Psychology, vol. 70, no. 5, pp. 473–478, 1965.
[30]
A. J. Caruso, M. T. McClowry, and L. Max, “Age-related effects on speech fluency,” Seminars in Speech and Language, vol. 18, no. 2, pp. 171–179, 1997.
[31]
P. S. Bisiacchi, E. Borella, S. Bergamaschi, B. Carretti, and S. Mondini, “Interplay between memory and executive functions in normal and pathological aging,” Journal of Clinical and Experimental Neuropsychology, vol. 30, no. 6, pp. 723–733, 2008.
[32]
L. Ashendorf, A. L. Jefferson, M. K. O'Connor, C. Chaisson, R. C. Green, and R. A. Stern, “Trail Making Test errors in normal aging, mild cognitive impairment, and dementia,” Archives of Clinical Neuropsychology, vol. 23, no. 2, pp. 129–137, 2008.
[33]
D. G. Cornell, M. Roberts, and G. Oram, “The Rey-Osterrieth complex figure test as a neuropsychological measure in criminal offenders,” Archives of Clinical Neuropsychology, vol. 12, no. 1, pp. 47–56, 1997.
[34]
H. Yamashita, “Right- and left-hand performance on the Rey-Osterrieth complex figure: a preliminary study in non-clinical sample of right handed people,” Archives of Clinical Neuropsychology, vol. 25, no. 4, pp. 314–317, 2010.
[35]
W. Siffert, D. Rosskopf, G. Siffert et al., “Association of a human G-protein β3 subunit variant with hypertension,” Nature Genetics, vol. 18, no. 1, pp. 45–48, 1998.
[36]
P. S. Chen, T. L. Yeh, I. H. Lee et al., “Effects of C825T polymorphism of the GNB3 gene on availability of dopamine transporter in healthy volunteers–a SPECT study,” NeuroImage, vol. 56, no. 3, pp. 1526–1530, 2011.
[37]
G. D. Honey, J. Suckling, F. Zelaya et al., “Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system,” Brain, vol. 126, no. 8, pp. 1767–1781, 2003.
[38]
P. A. MacDonald, H. Ganjavi, D. L. Collins, A. C. Evans, and S. Karama, “Investigating the relation between striatal volume and IQ,” Brain Imaging and Behavior, 2013.
[39]
E. Dobryakova, J. Deluca, H. M. Genova, and G. R. Wylie, “Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort-reward imbalance,” Journal of the International Neuropsychological Society, vol. 19, no. 8, pp. 849–853, 2013.
[40]
C. O’Callaghan, M. Bertoux, and M. Hornberger, “Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration,” Journal of Neurology, Neurosurgery & Psychiatry, 2013.
[41]
E. Brand, J.-G. Wang, S.-M. Herrmann, and J. A. Staessen, “An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gβ3 C825T polymorphism,” Journal of Hypertension, vol. 21, no. 4, pp. 729–737, 2003.
[42]
A. Olszanecka, K. Kawecka-Jaszcz, T. Kuznetsova et al., “Ambulatory blood pressure and left ventricular structure and function in relation to the G-protein β3-subunit polymorphism C825T in White Europeans,” Journal of Human Hypertension, vol. 17, no. 5, pp. 325–332, 2003.