全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis

DOI: 10.1155/2013/196848

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ubiquitin-proteasome system (UPS) is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets. 1. Introduction Ever since the ubiquitin proteasome system (UPS) was first characterized in the mid-20th century as the primary mediator of regulated protein degradation, its role in neurons has come under ever increasing scrutiny. Due to the large distances separating many synapses from the soma, local protein synthesis and degradation are particularly important to neuronal development and function. The diverse neuronal processes subject to regulation by the UPS range from long-term potentiation and homeostatic plasticity to acute regulation of neurotransmitter release. Several comprehensive reviews have been published on the importance of the UPS in synaptic plasticity [1, 2], intracellular trafficking [3, 4], and disease states [5, 6]; this paper will focus on the UPS-dependent regulation of neuronal morphogenesis. 2. The Ubiquitin Proteasome System Ubiquitin, aptly named for its intracellular omnipresence, is a small 76 residue protein which may be tagged onto target proteins as single moieties or polyubiquitin chains (Figure 1). Ubiquitination most famously serves to regulate protein degradation via the action of the ubiquitin proteasome system. In addition, ubiquitination has been shown to regulate a diverse array of cellular processes, including endocytosis, DNA repair, cell division, and protein trafficking [7, 8]. Ubiquitin is initially charged in an ATP-dependent manner by an E1 activating enzyme and then transferred to an E2 ubiquitin

References

[1]  I. J. Cajigas, T. Will, and E. M. Schuman, “Protein homeostasis and synaptic plasticity,” EMBO Journal, vol. 29, no. 16, pp. 2746–2752, 2010.
[2]  A. N. Hegde, “The ubiquitin-proteasome pathway and synaptic plasticity,” Learning and Memory, vol. 17, no. 7, pp. 314–327, 2010.
[3]  F. Acconcia, S. Sigismund, and S. Polo, “Ubiquitin in trafficking: the network at work,” Experimental Cell Research, vol. 315, no. 9, pp. 1610–1618, 2009.
[4]  L. A. Schwarz and G. N. Patrick, “Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins,” Molecular and Cellular Neuroscience, vol. 49, no. 3, pp. 387–393, 2012.
[5]  A. L. Schwartz and A. Ciechanover, “Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology,” Annual Review of Pharmacology and Toxicology, vol. 49, pp. 73–96, 2009.
[6]  H. C. Tai and E. M. Schuman, “Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction,” Nature Reviews Neuroscience, vol. 9, no. 11, pp. 826–838, 2008.
[7]  D. Nandi, P. Tahiliani, A. Kumar, and D. Chandu, “The ubiquitin-proteasome system,” Journal of Biosciences, vol. 31, no. 1, pp. 137–155, 2006.
[8]  T. Woelk, S. Sigismund, L. Penengo, and S. Polo, “The ubiquitination code: a signalling problem,” Cell Division, vol. 2, article 11, 2007.
[9]  R. C. Piper and P. J. Lehner, “Endosomal transport via ubiquitination,” Trends in Cell Biology, vol. 21, no. 11, pp. 647–655, 2011.
[10]  M. D. Ehlers, “Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system,” Nature Neuroscience, vol. 6, no. 3, pp. 231–242, 2003.
[11]  M. Colledge, E. M. Snyder, R. A. Crozier et al., “Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression,” Neuron, vol. 40, no. 3, pp. 595–607, 2003.
[12]  A. Y. Hung, C. C. Sung, I. L. Brito, and M. Sheng, “Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons,” PloS One, vol. 5, no. 3, article e9842, 2010.
[13]  L. A. Schwarz, B. J. Hall, and G. N. Patrick, “Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway,” Journal of Neuroscience, vol. 30, no. 49, pp. 16718–16729, 2010.
[14]  H. Shen, L. Korutla, N. Champtiaux et al., “NAC1 regulates the recruitment of the proteasome complex into dendritic spines,” Journal of Neuroscience, vol. 27, no. 33, pp. 8903–8913, 2007.
[15]  B. Bingol and E. M. Schuman, “Activity-dependent dynamics and sequestration of proteasomes in dendritic spines,” Nature, vol. 441, no. 7097, pp. 1144–1148, 2006.
[16]  B. Bingol, C. F. Wang, D. Arnott, D. Cheng, J. Peng, and M. Sheng, “Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines,” Cell, vol. 140, no. 4, pp. 567–578, 2010.
[17]  S. N. Djakovic, L. A. Schwarz, B. Barylko, G. N. DeMartino, and G. N. Patrick, “Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II,” Journal of Biological Chemistry, vol. 284, no. 39, pp. 26655–26665, 2009.
[18]  H. I. Wan, A. DiAntonio, R. D. Fetter, K. Bergstrom, R. Strauss, and C. S. Goodman, “Highwire regulates synaptic growth in Drosophila,” Neuron, vol. 26, no. 2, pp. 313–329, 2000.
[19]  A. DiAntonio, A. P. Haghighi, S. L. Portman, J. D. Lee, A. M. Amaranto, and C. S. Goodman, “Ubiquitination-dependent mechanisms regulate synaptic growth and function,” Nature, vol. 412, no. 6845, pp. 449–452, 2001.
[20]  A. M. Schaefer, G. D. Hadwiger, and M. L. Nonet, “rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans,” Neuron, vol. 26, no. 2, pp. 345–356, 2000.
[21]  M. Zhen, X. Huang, B. Bamber, and Y. Jin, “Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain,” Neuron, vol. 26, no. 2, pp. 331–343, 2000.
[22]  J. R. McLean, D. Chaix, M. D. Ohi, and K. L. Gould, “State of the APC/C: organization, function, and structure,” Critical Reviews in Biochemistry and Molecular Biology, vol. 46, no. 2, pp. 118–136, 2011.
[23]  P. van Roessel, D. A. Elliott, I. M. Robinson, A. Prokop, and A. H. Brand, “Independent regulation of synaptic size and activity by the anaphase-promoting complex,” Cell, vol. 119, no. 5, pp. 707–718, 2004.
[24]  P. Juo and J. M. Kaplan, “The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans,” Current Biology, vol. 14, no. 22, pp. 2057–2062, 2004.
[25]  Y. Konishi, J. Stegmüller, T. Matsuda, S. Bonni, and A. Bonni, “Cdh1-APC controls axonal growth and patterning in the mammalian brain,” Science, vol. 303, no. 5660, pp. 1026–1030, 2004.
[26]  S. V. Puram and A. Bonni, “Novel functions for the anaphase-promoting complex in neurobiology,” Seminars in Cell & Developmental Biology, vol. 22, no. 6, pp. 586–594, 2011.
[27]  Y. Ikeuchi, J. Stegmüller, S. Netherton et al., “A SnoN-Ccd1 pathway promotes axonal morphogenesis in the mammalian brain,” Journal of Neuroscience, vol. 29, no. 13, pp. 4312–4321, 2009.
[28]  A. Lasorella, J. Stegmüller, D. Guardavaccaro et al., “Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth,” Nature, vol. 442, no. 7101, pp. 471–474, 2006.
[29]  J. Stegmüller, Y. Konishi, M. A. Huynh, Z. Yuan, S. DiBacco, and A. Bonni, “Cell-intrinsic regulation of axonal morphogenesis by the Cdh1-APC target SnoN,” Neuron, vol. 50, no. 3, pp. 389–400, 2006.
[30]  M. A. Huynh, J. Stegmüller, N. Litterman, and A. Bonni, “Regulation of Cdh1-APC function in axon growth by Cdh1 phosphorylation,” Journal of Neuroscience, vol. 29, no. 13, pp. 4322–4327, 2009.
[31]  J. Stegmüller, M. A. Huynh, Z. Yuan, Y. Konishi, and A. Bonni, “TGFβ-Smad2 signaling regulates the Cdh1-APC/SnoN pathway of axonal morphogenesis,” Journal of Neuroscience, vol. 28, no. 8, pp. 1961–1969, 2008.
[32]  J. Wang, Q. Peng, Q. Lin, C. Childress, D. Carey, and W. Yang, “Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition,” Journal of Biological Chemistry, vol. 285, no. 16, pp. 12279–12288, 2010.
[33]  J. Drinjakovic, H. Jung, D. S. Campbell, L. Strochlic, A. Dwivedy, and C. E. Holt, “E3 ligase Nedd4 promotes axon branching by downregulating PTEN,” Neuron, vol. 65, no. 3, pp. 341–357, 2010.
[34]  Y. D. Kwak, B. Wang, W. Pan, H. Xu, X. Jiang, and F. F. Liao, “Functional interaction of phosphatase and tensin homologue (PTEN) with the E3 ligase NEDD4-1 during neuronal response to zinc,” Journal of Biological Chemistry, vol. 285, no. 13, pp. 9847–9857, 2010.
[35]  K. J. Christie, J. A. Martinez, and D. W. Zochodne, “Disruption of E3 ligase NEDD4 in peripheral neurons interrupts axon outgrowth: linkage to PTEN,” Molecular and Cellular Neuroscience, vol. 50, no. 2, pp. 179–192, 2012.
[36]  J. S. Rougier, M. Albesa, H. Abriel, and P. Viard, “Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) controls the sorting of newly synthesized CaV1.2 calcium channels,” Journal of Biological Chemistry, vol. 286, no. 11, pp. 8829–8838, 2011.
[37]  A. Persaud, P. Alberts, M. Hayes, et al., “Nedd4-1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function,” The EMBO Journal, vol. 30, no. 16, pp. 3259–3273, 2011.
[38]  A. Lin, Q. Hou, L. Jarzylo et al., “Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking,” Journal of Neurochemistry, vol. 119, no. 1, pp. 27–39, 2011.
[39]  S. Gao, C. Alarcón, G. Sapkota et al., “Ubiquitin ligase Nedd4L targets activated smad2/3 to limit TGF-β signaling,” Molecular Cell, vol. 36, no. 3, pp. 457–468, 2009.
[40]  H. R. Wang, Y. Zhang, B. Ozdamar et al., “Regulation of cell polarity and protrusion formation by targeting RhoA for degradation,” Science, vol. 302, no. 5651, pp. 1775–1779, 2003.
[41]  P. L. Cheng, H. Lu, M. Shelly, H. Gao, and M. M. Poo, “Phosphorylation of E3 ligase smurf1 switches its substrate preference in support of axon development,” Neuron, vol. 69, no. 2, pp. 231–243, 2011.
[42]  M. Kannan, S.-J. Lee, N. Schwedhelm-Domeyer, and J. Stegmüller, “The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth,” Development, vol. 139, no. 19, pp. 3600–3612, 2012.
[43]  M. Y. Lin, Y. M. Lin, T. C. Kao, H. H. Chuang, and R. H. Chen, “PDZ-RhoGEF ubiquitination by Cullin3-KLHL20 controls neurotrophin-induced neurite outgrowth,” Journal of Cell Biology, vol. 193, no. 6, pp. 985–994, 2011.
[44]  B. Tursun, A. Schlüter, M. A. Peters, et al., “The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones,” Genes & Development, vol. 19, no. 19, pp. 2307–2319, 2005.
[45]  O. Bernard, “Lim kinases, regulators of actin dynamics,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 6, pp. 1071–1076, 2007.
[46]  B. Grill, W. V. Bienvenut, H. M. Brown, B. D. Ackley, M. Quadroni, and Y. Jin, “C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1,” Neuron, vol. 55, no. 4, pp. 587–601, 2007.
[47]  K. Nakata, B. Abrams, B. Grill et al., “Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development,” Cell, vol. 120, no. 3, pp. 407–420, 2005.
[48]  H. Li, G. Kulkarni, and W. G. Wadsworth, “RPM-1, a Caenorhabditis elegans protein that functions in presynaptic differentiation, negatively regulates axon outgrowth by controlling SAX-3/robo and UNC-5/UNC5 activity,” Journal of Neuroscience, vol. 28, no. 14, pp. 3595–3603, 2008.
[49]  B. Grill, L. Chen, E. D. Tulgren, et al., “RAE-1, a novel PHR binding protein, is required for axon termination and synapse formation in Caenorhabditis elegans,” The Journal of Neuroscience, vol. 32, no. 8, pp. 2628–2636, 2012.
[50]  G. Trujillo, K. Nakata, D. Yan, I. N. Maruyama, and Y. Jin, “A ubiquitin E2 variant protein acts in axon termination and synaptogenesis in Caenorhabditis elegans,” Genetics, vol. 186, no. 1, pp. 135–145, 2010.
[51]  D. Yan, Z. Wu, A. D. Chisholm, and Y. Jin, “The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration,” Cell, vol. 138, no. 5, pp. 1005–1018, 2009.
[52]  E. H. Liao, W. Hung, B. Abrams, and M. Zhen, “An SCF-like ubiquitin ligase complex that controls presynaptic differentiation,” Nature, vol. 430, no. 6997, pp. 345–350, 2004.
[53]  J. E. Shin and A. DiAntonio, “Highwire regulates guidance of sister axons in the Drosophila mushroom body,” The Journal of Neuroscience, vol. 31, no. 48, pp. 17689–17700, 2011.
[54]  X. Tian, J. Li, V. Valakh, A. DiAntonio, and C. Wu, “Drosophila Rae1 controls the abundance of the ubiquitin ligase Highwire in post-mitotic neurons,” Nature Neuroscience, vol. 14, no. 10, pp. 1267–1275, 2011.
[55]  C. A. Collins, Y. P. Wairkar, S. L. Johnson, and A. DiAntonio, “Highwire restrains synaptic growth by attenuating a MAP kinase signal,” Neuron, vol. 51, no. 1, pp. 57–69, 2006.
[56]  C. Wu, R. W. Daniels, and A. DiAntonio, “DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth,” Neural Development, vol. 2, no. 1, article 16, 2007.
[57]  A. J. Bloom, B. R. Miller, J. R. Sanes, and A. DiAntonio, “The requirement for Phr1 in CNS axon tract formation reveals the corticostriatal boundary as a choice point for cortical axons,” Genes and Development, vol. 21, no. 20, pp. 2593–2606, 2007.
[58]  S. M. Culican, A. J. Bloom, J. A. Weiner, and A. DiAntonio, “Phr1 regulates retinogeniculate targeting independent of activity and ephrin-A signalling,” Molecular and Cellular Neuroscience, vol. 41, no. 3, pp. 304–312, 2009.
[59]  J. D'Souza, M. Hendricks, S. Le Guyader et al., “Formation of the retinotectal projection requires Esrom, an ortholog of PAM (protein associated with Myc),” Development, vol. 132, no. 2, pp. 247–256, 2005.
[60]  B. Q. Vo, A. J. Bloom, and S. M. Culican, “Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells,” Visual Neuroscience, vol. 28, no. 2, pp. 175–181, 2011.
[61]  J. W. Lewcock, N. Genoud, K. Lettieri, and S. L. Pfaff, “The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics,” Neuron, vol. 56, no. 4, pp. 604–620, 2007.
[62]  M. Hendricks and S. Jesuthasan, “PHR regulates growth cone pausing at intermediate targets through microtubule disassembly,” Journal of Neuroscience, vol. 29, no. 20, pp. 6593–6598, 2009.
[63]  T. Saiga, T. Fukuda, M. Matsumoto et al., “Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development,” Molecular and Cellular Biology, vol. 29, no. 13, pp. 3529–3543, 2009.
[64]  J. R. K. Marland, D. Pan, and P. C. Buttery, “Rac GTPase-activating protein (Rac GAP) α1-chimaerin undergoes proteasomal degradation and is stabilized by diacylglycerol signaling in neurons,” Journal of Biological Chemistry, vol. 286, no. 1, pp. 199–207, 2011.
[65]  H. Wegmeyer, J. Egea, N. Rabe et al., “EphA4-dependent axon guidance is mediated by the RacGAP α2-chimaerin,” Neuron, vol. 55, no. 5, pp. 756–767, 2007.
[66]  A. A. Beg, J. E. Sommer, J. H. Martin, and P. Scheiffele, “α2-chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits,” Neuron, vol. 55, no. 5, pp. 768–778, 2007.
[67]  T. Iwasato, H. Katoh, H. Nishimaru et al., “Rac-GAP α-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling,” Cell, vol. 130, no. 4, pp. 742–753, 2007.
[68]  L. Shi, W. Y. Fu, K. W. Hung et al., “α2-chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 41, pp. 16347–16352, 2007.
[69]  A. H. Kim, S. V. Puram, P. M. Bilimoria et al., “A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons,” Cell, vol. 136, no. 2, pp. 322–336, 2009.
[70]  S. V. Puram, A. H. Kim, Y. Ikeuchi et al., “A CaMKIIβ 2 signaling pathway at the centrosome regulates dendrite patterning in the brain,” Nature Neuroscience, vol. 14, no. 8, pp. 973–983, 2011.
[71]  S. V. Puram, A. Riccio, S. Koirala, et al., “A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain,” Genes & Development, vol. 25, no. 24, pp. 2659–2673, 2011.
[72]  H. Kawabe, A. Neeb, K. Dimova et al., “Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development,” Neuron, vol. 65, no. 3, pp. 358–372, 2010.
[73]  Y. Lu, F. Wang, Y. Li, J. Ferris, J. A. Lee, and F. B. Gao, “The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches,” Human Molecular Genetics, vol. 18, no. 3, pp. 454–462, 2009.
[74]  N. Wei, G. Serino, and X. W. Deng, “The COP9 signalosome: more than a protease,” Trends in Biochemical Sciences, vol. 33, no. 12, pp. 592–600, 2008.
[75]  I. Djagaeva and S. Doronkin, “Dual regulation of dendritic morphogenesis in Drosophila by the COP9 signalosome,” PLoS One, vol. 4, no. 10, article e7577, 2009.
[76]  I. Djagaeva and S. Doronkin, “COP9 limits dendritic branching via Cullin3-dependent degradation of the actin-crosslinking BTB-domain protein Kelch,” PloS One, vol. 4, no. 10, article e7598, 2009.
[77]  N. Litterman, Y. Ikeuchi, G. Gallardo et al., “An OBSL1-CUl7Fbxw8 ubiquitin ligase signaling mechanism regulates golgi morphology and dendrite patterning,” PLoS Biology, vol. 9, no. 5, article e1001060, 2011.
[78]  P. Buttery, A. A. Beg, B. Chih, A. Broder, C. A. Mason, and P. Scheiffele, “The diacylglycerol-binding protein α1-chimaerin regulates dendritic morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 6, pp. 1924–1929, 2006.
[79]  A. Daskalaki, N. A. Shalaby, K. Kux et al., “Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized,” The Journal of Cell Biology, vol. 195, no. 6, pp. 1017–1031, 2011.
[80]  M. Itoh, C. H. Kim, G. Palardy et al., “Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta,” Developmental Cell, vol. 4, no. 1, pp. 67–82, 2003.
[81]  O. Ossipova, J. Ezan, and S. Y. Sokol, “PAR-1 phosphorylates mind bomb to promote vertebrate neurogenesis,” Developmental Cell, vol. 17, no. 2, pp. 222–233, 2009.
[82]  K. J. Yoon, B. K. Koo, S. K. Im et al., “Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells,” Neuron, vol. 58, no. 4, pp. 519–531, 2008.
[83]  E. A. Choe, L. Liao, J. Y. Zhou et al., “Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1,” Journal of Neuroscience, vol. 27, no. 35, pp. 9503–9512, 2007.
[84]  R. D. Smrt, K. E. Szulwach, R. L. Pfeiffer et al., “MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1,” Stem Cells, vol. 28, no. 6, pp. 1060–1070, 2010.
[85]  C. T. Kuo, L. Y. Jan, and Y. N. Jan, “Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 42, pp. 15230–15235, 2005.
[86]  C. T. Kuo, S. Zhu, S. Younger, L. Y. Jan, and Y. N. Jan, “Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning,” Neuron, vol. 51, no. 3, pp. 283–290, 2006.
[87]  T. V. Lee, Y. Fan, S. Wang et al., “Drosophila IAP1-mediated ubiquitylation controls activation of the initiator caspase DRONC independent of protein degradation,” PLoS Genetics, vol. 7, no. 9, article 100226, 2011.
[88]  S. V. Dindot, B. A. Antalffy, M. B. Bhattacharjee, and A. L. Beaudet, “The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology,” Human Molecular Genetics, vol. 17, no. 1, pp. 111–118, 2008.
[89]  K. Yashiro, T. T. Riday, K. H. Condon et al., “Ube3a is required for experience-dependent maturation of the neocortex,” Nature Neuroscience, vol. 12, no. 6, pp. 777–783, 2009.
[90]  P. L. Greer, R. Hanayama, B. L. Bloodgood et al., “The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc,” Cell, vol. 140, no. 5, pp. 704–716, 2010.
[91]  S. S. Margolis, J. Salogiannis, D. M. Lipton et al., “EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation,” Cell, vol. 143, no. 3, pp. 442–455, 2010.
[92]  T. J. Van de Ven, H. M. A. VanDongen, and A. M. J. VanDongen, “The nonkinase phorbol ester receptor α1-chimerin binds the NMDA receptor NR2A subunit and regulates dendritic spine density,” Journal of Neuroscience, vol. 25, no. 41, pp. 9488–9496, 2005.
[93]  A. M. Hamilton, W. C. Oh, H. Vega-Ramirez et al., “Activity-dependent growth of new dendritic spines is regulated by the proteasome,” Neuron, vol. 74, no. 6, pp. 1023–1030, 2012.
[94]  S. N. Djakovic, E. M. Marquez-Lona, S. K. Jakawich et al., “Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons,” The Journal of Neuroscience, vol. 32, no. 15, pp. 5126–5131, 2012.
[95]  A. R. Halt, R. F. Dallapiazza, Y. Zhou et al., “CaMKII binding to GluN2B is critical during memory consolidation,” The EMBO Journal, vol. 31, no. 5, pp. 1203–1216, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133