We report the first neural recording during ecstatic meditations called jhanas and test whether a brain reward system plays a role in the joy reported. Jhanas are Altered States of Consciousness (ASC) that imply major brain changes based on subjective reports: (1) external awareness dims, (2) internal verbalizations fade, (3) the sense of personal boundaries is altered, (4) attention is highly focused on the object of meditation, and (5) joy increases to high levels. The fMRI and EEG results from an experienced meditator show changes in brain activity in 11 regions shown to be associated with the subjective reports, and these changes occur promptly after jhana is entered. In particular, the extreme joy is associated not only with activation of cortical processes but also with activation of the nucleus accumbens (NAc) in the dopamine/opioid reward system. We test three mechanisms by which the subject might stimulate his own reward system by external means and reject all three. Taken together, these results demonstrate an apparently novel method of self-stimulating a brain reward system using only internal mental processes in a highly trained subject. 1. Introduction Ecstatic experiences have been reported in every major religion, and psychologists have long advocated research in these areas [1, 2]. Neuroscience can contribute to these issues by documenting the brain activity of expert meditators, some of whom have trained to enter these states with volitional control. The type of meditation studied here is a Buddhist concentration technique called jhana that induces an Altered State of Consciousness (ASC) in the framework of Vaitl et al. [3] and whose short-term goal is joy or happiness. Because happiness is a fundamental goal of many people and is the object of the new discipline of positive psychology [4, 5], imaging the brain of an individual who claims to generate joy without any external rewards or cues could point the way toward improved training in joy and greater resilience in the face of external difficulties. Of particular interest is the neural mechanisms by which happiness is generated. Jhana meditations consist of a set of 8 sequential practices that were first codified by Buddhists over 2000 years ago [6]. All are reported to be ecstatic, in that they generate great joy while in an ASC that is dissociated from external cues or stimuli. The first three practices are, to our knowledge, the only meditations to specifically target short-term joy or happiness (see [7, 8] for other meditations that generate ASCs). Figure 1 shows a schematic of
References
[1]
W. James, The Varieties of Religious Experience: A Study in Human Nature, Harvard University, Cambridge, Mass, USA, 1902.
[2]
A. Maslow, Religions, Values and Peak-Experiences, Ohio State University Press, Columbus, Ohio, USA, 1964.
[3]
D. Vaitl, J. Gruzelier, G. A. Jamieson et al., “Psychobiology of altered states of consciousness,” Psychological Bulletin, vol. 131, no. 1, pp. 98–127, 2005.
[4]
S. Lyubomirsky, The How of Happiness: A Scientific Approach to Getting the Life you Want, Penguin Press, New York, NY, USA, 2008.
[5]
M. A. Cohn, B. L. Fredrickson, S. L. Brown, J. A. Mikels, and A. M. Conway, “Happiness unpacked: positive emotions increase life satisfaction by building resilience,” Emotion, vol. 9, no. 3, pp. 361–368, 2009.
[6]
A. Khema, Visible Here and Now, Shambhala Publications, Boston, Mass, USA, 2001.
[7]
M. Beauregard and V. Paquette, “Neural correlates of a mystical experience in Carmelite nuns,” Neuroscience Letters, vol. 405, no. 3, pp. 186–190, 2006.
[8]
A. B. Newberg and J. Iversen, “The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations,” Medical Hypotheses, vol. 61, no. 2, pp. 282–291, 2003.
[9]
A. Brahm, Mindfulness, Bliss, and Beyond: A Meditator’s Handbook, Wisdom Publications, Boston, Mass, USA, 2006.
[10]
A. Lutz, H. A. Slagter, J. D. Dunne, and R. J. Davidson, “Attention regulation and monitoring in meditation,” Trends in Cognitive Sciences, vol. 12, no. 4, pp. 163–169, 2008.
[11]
A. Lutz, J. Brefczynski-Lewis, T. Johnstone, and R. J. Davidson, “Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise,” PLoS ONE, vol. 3, no. 3, Article ID e1897, 2008.
[12]
E. Luders, A. W. Toga, N. Lepore, and C. Gaser, “The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter,” NeuroImage, vol. 45, no. 3, pp. 672–678, 2009.
[13]
S. W. Lazar, C. E. Kerr, R. H. Wasserman et al., “Meditation experience is associated with increased cortical thickness,” NeuroReport, vol. 16, no. 17, pp. 1893–1897, 2005.
[14]
J. A. Brefczynski-Lewis, A. Lutz, H. S. Schaefer, D. B. Levinson, and R. J. Davidson, “Neural correlates of attentional expertise in long-term meditation practitioners,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11483–11488, 2007.
[15]
K. A. MacLean, E. Ferrer, S. R. Aichele et al., “Intensive meditation training leads to improvements in perceptual discrimination and sustained attention,” Psychological Science, vol. 21, pp. 820–830, 2010.
[16]
R. J. Davidson, J. Kabat-Zinn, J. Schumacher et al., “Alterations in brain and immune function produced by mindfulness meditation,” Psychosomatic Medicine, vol. 65, no. 4, pp. 564–570, 2003.
[17]
Y. Y. Tang, Y. Ma, J. Wang et al., “Short-term meditation training improves attention and self-regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17152–17156, 2007.
[18]
R. Walsh and S. L. Shapiro, “The meeting of meditative disciplines and western psychology: a mutually enriching dialogue,” American Psychologist, vol. 61, no. 3, pp. 227–239, 2006.
[19]
N. D. Daw, S. Kakade, and P. Dayan, “Opponent interactions between serotonin and dopamine,” Neural Networks, vol. 15, no. 4-6, pp. 603–616, 2002.
[20]
J. B. Nitschke, I. Sarinopoulos, and K. L. Mackiewicz, “Functional neuroanatomy of aversion and its anticipation,” NeuroImage, vol. 29, no. 1, pp. 106–116, 2006.
[21]
W. Schultz, “Multiple reward signals in the brain,” Nature Reviews Neuroscience, vol. 1, no. 3, pp. 199–207, 2000.
[22]
A. Rangel, C. Camerer, and P. R. Montague, “A framework for studying the neurobiology of value-based decision making,” Nature Reviews Neuroscience, vol. 9, no. 7, pp. 545–556, 2008.
[23]
I. E. de Araujo, E. T. Rolls, M. I. Velazco, C. Margot, and I. Cayeux, “Cognitive modulation of olfactory processing,” Neuron, vol. 46, no. 4, pp. 671–679, 2005.
[24]
M. L. Kringelbach, “The human orbitofrontal cortex: linking reward to hedonic experience,” Nature Reviews Neuroscience, vol. 6, no. 9, pp. 691–702, 2005.
[25]
A. J. Blood and R. J. Zatorre, “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11818–11823, 2001.
[26]
M. L. Kringelbach, J. O'Doherty, E. T. Rolls, and C. Andrews, “Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness,” Cerebral Cortex, vol. 13, no. 10, pp. 1064–1071, 2003.
[27]
B. A. Arnow, J. E. Desmond, L. L. Banner et al., “Brain activation and sexual arousal in healthy, heterosexual males,” Brain, vol. 125, no. 5, pp. 1014–1023, 2002.
[28]
D. Mobbs, M. D. Greicius, E. Abdel-Azim, V. Menon, and A. L. Reiss, “Humor modulates the mesolimbic reward centers,” Neuron, vol. 40, no. 5, pp. 1041–1048, 2003.
[29]
K. Preuschoff, P. Bossaerts, and S. R. Quartz, “Neural differentiation of expected reward and risk in human subcortical structures,” Neuron, vol. 51, no. 3, pp. 381–390, 2006.
[30]
A. Bartels and S. Zeki, “The neural correlates of maternal and romantic love,” NeuroImage, vol. 21, no. 3, pp. 1155–1166, 2004.
[31]
H. Plassmann, J. O'Doherty, B. Shiv, and A. Rangel, “Marketing actions can modulate neural representations of experienced pleasantness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 1050–1054, 2008.
[32]
I. E. de Araujo, E. T. Rolls, M. I. Velazco, C. Margot, and I. Cayeux, “Cognitive modulation of olfactory processing,” Neuron, vol. 46, no. 4, pp. 671–679, 2005.
[33]
P. W. Kalivas and N. D. Volkow, “The neural basis of addiction: a pathology of motivation and choice,” American Journal of Psychiatry, vol. 162, no. 8, pp. 1403–1413, 2005.
[34]
S. Peci?a, K. S. Smith, and K. C. Berridge, “Hedonic hot spots in the brain,” The Neuroscientist, vol. 12, no. 6, pp. 500–511, 2006.
[35]
K. D'Ardenne, S. M. McClure, L. E. Nystrom, and J. D. Cohen, “BOLD responses reflecting dopaminergic signals in the human ventral tegmental area,” Science, vol. 319, no. 5867, pp. 1264–1267, 2008.
[36]
S. C. Cramer, R. M. Weisskoff, J. D. Schaechter et al., “Motor cortex activation is related to force of squeezing,” Human Brain Mapping, vol. 16, no. 4, pp. 197–205, 2002.
[37]
Welcome Trust Centre for Neuroimaging, “SPM5: Statistical Parametric Mapping Software,” 2005http://www.fil.ion.ucl.ac.uk/spm/software/spm5/.
[38]
J. A. Maldjian, P. J. Laurienti, R. A. Kraft, and J. H. Burdette, “An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets,” NeuroImage, vol. 19, no. 3, pp. 1233–1239, 2003.
[39]
M. Brett, J.-L. Anton, R. Valabregue, and J.-B. Poline, “Region of interest analysis using an SPM toolbox,” NeuroImage, vol. 16, no. 2, 2002.
[40]
U. Kirk, M. Skov, M. S. Christensen, and N. Nygaard, “Brain correlates of aesthetic expertise: a parametric fMRI study,” Brain and Cognition, vol. 69, no. 2, pp. 306–315, 2009.
[41]
B. Knutson, S. Rick, G. E. Wimmer, D. Prelec, and G. Loewenstein, “Neural predictors of purchases,” Neuron, vol. 53, no. 1, pp. 147–156, 2007.
[42]
A. Lutz, L. L. Greischar, N. B. Rawlings, M. Ricard, and R. J. Davidson, “Long-term meditators self-induce high-amplitude gamma synchrony during mental practice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 46, pp. 16369–16373, 2004.
[43]
L. I. Aftanas and S. A. Golocheikine, “Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention,” Neuroscience Letters, vol. 310, no. 1, pp. 57–60, 2001.
[44]
M. Okamoto, H. Dan, K. Sakamoto et al., “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” NeuroImage, vol. 21, no. 1, pp. 99–111, 2004.
[45]
H. Laufs, A. Kleinschmidt, A. Beyerle et al., “EEG-correlated fMRI of human alpha activity,” NeuroImage, vol. 19, no. 4, pp. 1463–1476, 2003.
[46]
A. M. Galaburda, M. LeMay, T. L. Kemper, and N. Geschwind, “Right-left asymmetries in the brain. Structural differences between the hemispheres may underlie cerebral dominance,” Science, vol. 199, no. 4331, pp. 852–856, 1978.
[47]
S. Knecht, A. Fl?el, B. Dr?ger et al., “Degree of language lateralization determines susceptibility to unilateral brain lesions,” Nature Neuroscience, vol. 5, no. 7, pp. 695–699, 2002.
[48]
F. Travis and R. K. Wallace, “Autonomic and EEG Patterns during eyes-closed rest and transcendental meditation practice,” Consciousness and Cognition, vol. 8, no. 3, pp. 302–318, 1999.
[49]
J. H. Austin, Selfless Insight, MIT Press, Cambridge, Mass, USA, 2009.
[50]
R. Shankman, The Experience of Samadhi: An In-Depth Exploration of Buddhist Meditation, Shambala Press, Boston, Mass, USA, 2008.