It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies. 1. Introduction Major depressive disorder (MDD) constitutes the first leading cause of years lived with disability [1], and its incidence is on the rise globally. Yet, until recently, little was known about its pathogenesis, as these conditions are not associated with relevant brain alterations or clear animal models for spontaneous recurrent mood episodes. The clinical phenomenology of major depression implicates brain neurotransmitter systems involved in the regulation of mood, anxiety, fear, reward processing, attention, motivation, stress responses, social interaction, and neurovegetative function [2]. MDD is associated with blunted reactivity to both positively and negatively stimuli [3]; thus, the decline in hedonic responses may be related to generalized affective insensitivity, instead of deficits in the capacity to feel pleasure at the level of basic sensory experience [4]. From the middle of the last century, a great effort has been made to elucidate the brain areas involved in emotion control and in the pathophysiology of mood disorders. Animal and human studies have indicated the involvement of the limbic system—including the hippocampal
References
[1]
WHO, “The world health report,” 2001.
[2]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), APA Press, 1994.
[3]
L. M. Bylsma, B. H. Morris, and J. Rottenberg, “A meta-analysis of emotional reactivity in major depressive disorder,” Clinical Psychology Review, vol. 28, no. 4, pp. 676–691, 2008.
[4]
M. T. Treadway and D. H. Zald, “Reconsidering anhedonia in depression: lessons from translational neuroscience,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 3, pp. 537–555, 2011.
[5]
M. Koenigs and J. Grafman, “The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex,” Behavioural Brain Research, vol. 201, no. 2, pp. 239–243, 2009.
[6]
J. L. Price and W. C. Drevets, “Neurocircuitry of mood disorders,” Neuropsychopharmacology, vol. 35, no. 1, pp. 192–216, 2010.
[7]
J. L. Price and W. C. Drevets, “Neural circuits underlying the pathophysiology of mood disorders,” Trends in Cognitive Sciences, vol. 16, pp. 61–71, 2012.
[8]
J. Pascual-Brazo, E. Castro, A. Diaz et al., “Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT(4) receptor agonist RS67333,” International Journal of Neuropsychopharmacology, vol. 15, no. 5, pp. 631–643, 2012.
[9]
L. Xia, C. Delomenie, I. David et al., “Ventral hippocampal molecular pathways and impaired neurogenesis associated with 5-HT(1)A and 5-HT(1)B receptors disruption in mice,” Neuroscience Letters, vol. 521, no. 1, pp. 20–25, 2012.
[10]
R. Mostany, E. M. Valdizán, and A. Pazos, “A role for nuclear β-catenin in SNRI antidepressant-induced hippocampal cell proliferation,” Neuropharmacology, vol. 55, no. 1, pp. 18–26, 2008.
[11]
D. Tardito, J. Perez, E. Tiraboschi, L. Musazzi, G. Racagni, and M. Popoli, “Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview,” Pharmacological Reviews, vol. 58, no. 1, pp. 115–134, 2006.
[12]
E. J. Nestler, M. Barrot, R. J. DiLeone, A. J. Eisch, S. J. Gold, and L. M. Monteggia, “Neurobiology of depression,” Neuron, vol. 34, no. 1, pp. 13–25, 2002.
[13]
O. Berton and E. J. Nestler, “New approaches to antidepressant drug discovery: beyond monoamines,” Nature Reviews Neuroscience, vol. 7, no. 2, pp. 137–151, 2006.
[14]
A. Caspi, K. Sugden, T. E. Moffitt et al., “Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene,” Science, vol. 301, no. 5631, pp. 386–389, 2003.
[15]
T. A. Ban, “Pharmacotherapy of depression: a historical analysis,” Journal of Neural Transmission, vol. 108, no. 6, pp. 707–716, 2001.
[16]
J. J. Schildkraut, “The catecholamine hypothesis of affective disorders: a review of supporting evidence,” The American Journal of Psychiatry, vol. 122, no. 5, pp. 509–522, 1965.
[17]
H. G. Ruhé, N. S. Mason, and A. H. Schene, “Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies,” Molecular Psychiatry, vol. 12, no. 4, pp. 331–359, 2007.
[18]
R. S. Duman, G. R. Heninger, and E. J. Nestler, “A molecular and cellular theory of depression,” Archives of General Psychiatry, vol. 54, no. 7, pp. 597–606, 1997.
[19]
R. S. Duman, J. Malberg, and J. Thome, “Neural plasticity to stress and antidepressant treatment,” Biological Psychiatry, vol. 46, no. 9, pp. 1181–1191, 1999.
[20]
B. Czéh, T. Michaelis, T. Watanabe et al., “Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12796–12801, 2001.
[21]
J. E. Malberg and R. S. Duman, “Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment,” Neuropsychopharmacology, vol. 28, no. 9, pp. 1562–1571, 2003.
[22]
J. L. Warner-Schmidt and R. S. Duman, “Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment,” Hippocampus, vol. 16, no. 3, pp. 239–249, 2006.
[23]
A. Sahay and R. Hen, “Adult hippocampal neurogenesis in depression,” Nature Neuroscience, vol. 10, no. 9, pp. 1110–1115, 2007.
[24]
A. Sahay, M. R. Drew, and R. Hen, “Dentate gyrus neurogenesis and depression,” Progress in Brain Research, vol. 163, pp. 697–722, 2007.
[25]
C. H. Duman, L. Schlesinger, D. S. Russell, and R. S. Duman, “Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice,” Brain Research C, vol. 1199, pp. 148–158, 2008.
[26]
T. M. Madsen, S. S. Newton, M. E. Eaton, D. S. Russell, and R. S. Duman, “Chronic electroconvulsive seizure up-regulates β-catenin expression in rat hippocampus: role in adult neurogenesis,” Biological Psychiatry, vol. 54, no. 10, pp. 1006–1014, 2003.
[27]
N. Li, B. Lee, R. J. Liu et al., “mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists,” Science, vol. 329, no. 5994, pp. 959–964, 2010.
[28]
H. J. Lee, J. W. Kim, S. V. Yim et al., “Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats,” Molecular Psychiatry, vol. 6, no. 6, pp. 725–728, 2001.
[29]
V. M. Heine, S. Maslam, J. Zareno, M. Jo?ls, and P. J. Lucassen, “Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible,” European Journal of Neuroscience, vol. 19, no. 1, pp. 131–144, 2004.
[30]
K. Jaako-Movits, T. Zharkovsky, M. Pedersen, and A. Zharkovsky, “Decreased hippocampal neurogenesis following olfactory bulbectomy is reversed by repeated citalopram administration,” Cellular and Molecular Neurobiology, vol. 26, no. 7-8, pp. 1559–1570, 2006.
[31]
Y. Xu, P. A. Barish, J. Pan, W. O. Ogle, and J. M. O'Donnell, “Animal models of depression and neuroplasticity: assessing drug action in relation to behavior and neurogenesis,” Methods in Molecular Biology, vol. 829, pp. 103–124, 2012.
[32]
Y. I. Sheline, P. W. Wang, M. H. Gado, J. G. Csernansky, and M. W. Vannier, “Hippocampal atrophy in recurrent major depression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 9, pp. 3908–3913, 1996.
[33]
J. D. Bremner, M. Narayan, E. R. Anderson, L. H. Staib, H. L. Miller, and D. S. Charney, “Hippocampal volume reduction in major depression,” American Journal of Psychiatry, vol. 157, no. 1, pp. 115–117, 2000.
[34]
C. A. Stockmeier, G. J. Mahajan, L. C. Konick et al., “Cellular changes in the postmortem hippocampus in major depression,” Biological Psychiatry, vol. 56, no. 9, pp. 640–650, 2004.
[35]
J. Beauquis, P. Roig, F. Homo-Delarche, A. De Nicola, and F. Saravia, “Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment,” European Journal of Neuroscience, vol. 23, no. 6, pp. 1539–1546, 2006.
[36]
B. Czéh, J. I. H. Müller-Keuker, R. Rygula et al., “Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment,” Neuropsychopharmacology, vol. 32, no. 7, pp. 1490–1503, 2007.
[37]
M. Tochigi, K. Iwamoto, M. Bundo, T. Sasaki, N. Kato, and T. Kato, “Gene expression profiling of major depression and suicide in the prefrontal cortex of postmortem brains,” Neuroscience Research, vol. 60, no. 2, pp. 184–191, 2008.
[38]
R. M. Tordera, A. L. Garcia-García, N. Elizalde et al., “Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex,” European Neuropsychopharmacology, vol. 21, no. 1, pp. 23–32, 2011.
[39]
A. Blugeot, C. Rivat, E. Bouvier et al., “Vulnerability to depression: from brain neuroplasticity to identification of biomarkers,” Journal of Neuroscience, vol. 31, no. 36, pp. 12889–12899, 2011.
[40]
M. Kodama, T. Fujioka, and R. S. Duman, “Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat,” Biological Psychiatry, vol. 56, no. 8, pp. 570–580, 2004.
[41]
J. E. Castro, E. Varea, C. Márquez, M. I. Cordero, G. Poirier, and C. Sandi, “Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat,” PLoS ONE, vol. 5, no. 1, Article ID e8618, 2010.
[42]
D. M. Diamond, A. Campbell, C. R. Park, and R. M. Vouimba, “Preclinical research on stress, memory, and the brain in the development of pharmacotherapy for depression,” European Neuropsychopharmacology, vol. 14, supplement 5, pp. S491–S495, 2004.
[43]
J. Thome, N. Sakai, K. H. Shin et al., “cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment,” Journal of Neuroscience, vol. 20, no. 11, pp. 4030–4036, 2000.
[44]
A. C. H. Chen, Y. Shirayama, K. H. Shin, R. L. Neve, and R. S. Duman, “Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect,” Biological Psychiatry, vol. 49, no. 9, pp. 753–762, 2001.
[45]
P. Penzes, M. E. Cahill, K. A. Jones, J. E. Vanleeuwen, and K. M. Woolfrey, “Dendritic spine pathology in neuropsychiatric disorders,” Nature Neuroscience, vol. 14, no. 3, pp. 285–293, 2011.
[46]
S. C. Cook and C. L. Wellman, “Chronic stress alters dendritic morphology in rat medial prefrontal cortex,” Journal of Neurobiology, vol. 60, no. 2, pp. 236–248, 2004.
[47]
J. J. Radley, H. M. Sisti, J. Hao et al., “Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex,” Neuroscience, vol. 125, no. 1, pp. 1–6, 2004.
[48]
D. ?ngür, W. C. Drevets, and J. L. Price, “Glial reduction in the subgenual prefrontal cortex in mood disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13290–13295, 1998.
[49]
M. P. Bowley, W. C. Drevets, D. ?ngür, and J. L. Price, “Low glial numbers in the amygdala in major depressive disorder,” Biological Psychiatry, vol. 52, no. 5, pp. 404–412, 2002.
[50]
G. Rajkowska, J. J. Miguel-Hidalgo, J. Wei et al., “Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression,” Biological Psychiatry, vol. 45, no. 9, pp. 1085–1098, 1999.
[51]
M. Popoli, Z. Yan, B. S. McEwen, and G. Sanacora, “The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission,” Nature Reviews Neuroscience, vol. 13, pp. 22–37, 2012.
[52]
J. J. Cerqueira, F. Mailliet, O. F. X. Almeida, T. M. Jay, and N. Sousa, “The prefrontal cortex as a key target of the maladaptive response to stress,” Journal of Neuroscience, vol. 27, no. 11, pp. 2781–2787, 2007.
[53]
P. J. Lucassen, M. B. Müller, F. Holsboer et al., “Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure,” American Journal of Pathology, vol. 158, no. 2, pp. 453–468, 2001.
[54]
A. Bachis, M. I. Cruz, R. L. Nosheny, and I. Mocchetti, “Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex,” Neuroscience Letters, vol. 442, no. 2, pp. 104–108, 2008.
[55]
T. A. Kosten, M. P. Galloway, R. S. Duman, D. S. Russell, and C. D'Sa, “Repeated unpredictable stress and antidepressants differentially regulate expression of the Bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures,” Neuropsychopharmacology, vol. 33, no. 7, pp. 1545–1558, 2008.
[56]
M. Nibuya, S. Morinobu, and R. S. Duman, “Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments,” Journal of Neuroscience, vol. 15, no. 11, pp. 7539–7547, 1995.
[57]
T. Saarelainen, P. Hendolin, G. Lucas et al., “Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects,” Journal of Neuroscience, vol. 23, no. 1, pp. 349–357, 2003.
[58]
P. J. Lucassen, E. Fuchs, and B. Czéh, “Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex,” Biological Psychiatry, vol. 55, no. 8, pp. 789–796, 2004.
[59]
S. Ueda, S. Sakakibara, and K. Yoshimoto, “Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning,” Neuroscience, vol. 135, no. 2, pp. 395–402, 2005.
[60]
J. E. Malberg, A. J. Eisch, E. J. Nestler, and R. S. Duman, “Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus,” Journal of Neuroscience, vol. 20, no. 24, pp. 9104–9110, 2000.
[61]
M. Sairanen, G. Lucas, P. Ernfors, M. Castrén, and E. Castrén, “Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus,” Journal of Neuroscience, vol. 25, no. 5, pp. 1089–1094, 2005.
[62]
R. Alonso, G. Griebel, G. Pavone, J. Stemmelin, G. Le Fur, and P. Soubrié, “Blockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression,” Molecular Psychiatry, vol. 9, no. 3, pp. 278–286, 2004.
[63]
G. Lucas, J. Du, T. Romeas et al., “Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat,” PLoS ONE, vol. 5, no. 2, Article ID e9253, 2010.
[64]
G. Lucas, V. V. Rymar, J. Du et al., “Serotonin4 (5-HT4) receptor agonists are putative antidepressants with a rapid onset of action,” Neuron, vol. 55, no. 5, pp. 712–725, 2007.
[65]
A. Tamburella, V. Micale, A. Navarria, and F. Drago, “Antidepressant properties of the 5-HT4 receptor partial agonist, SL65.0155: behavioral and neurochemical studies in rats,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 7, pp. 1205–1210, 2009.
[66]
A. Ferres-Coy, F. Pilar-Cuellar, R. Vidal et al., “RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis,” Translational Psychiatry, vol. 3, article e211, 2013.
[67]
O. F. O'Leary, S. Zandy, T. G. Dinan, and J. F. Cryan, “Lithium augmentation of the effects of desipramine in a mouse model of treatment-resistant depression: a role for hippocampal cell proliferation,” Neuroscience, vol. 228, pp. 36–46, 2013.
[68]
K. Huo, Y. Sun, H. Li et al., “Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain,” Molecular and Cellular Neuroscience, vol. 51, pp. 32–42, 2012.
[69]
J. M. Encinas, A. Vaahtokari, and G. Enikolopov, “Fluoxetine targets early progenitor cells in the adult brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 21, pp. 8233–8238, 2006.
[70]
E. Segi-Nishida, J. L. Warner-Schmidt, and R. S. Duman, “Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11352–11357, 2008.
[71]
L. Santarelli, M. Saxe, C. Gross et al., “Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants,” Science, vol. 301, no. 5634, pp. 805–809, 2003.
[72]
J. E. Malberg and L. E. Schecter, “Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs,” Current Pharmaceutical Design, vol. 11, no. 2, pp. 145–155, 2005.
[73]
A. Dranovsky and R. Hen, “Hippocampal eurogenesis: regulation by stress and antidepressants,” Biological Psychiatry, vol. 59, no. 12, pp. 1136–1143, 2006.
[74]
M. Banasr, M. Hery, R. Printemps, and A. Daszuta, “Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone,” Neuropsychopharmacology, vol. 29, no. 3, pp. 450–460, 2004.
[75]
J. W. Wang, D. J. David, J. E. Monckton, F. Battaglia, and R. Hen, “Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells,” Journal of Neuroscience, vol. 28, no. 6, pp. 1374–1384, 2008.
[76]
A. Surget, M. Saxe, S. Leman et al., “Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal,” Biological Psychiatry, vol. 64, no. 4, pp. 293–301, 2008.
[77]
S. A. Arnold and T. Hagg, “Serotonin 1A receptor agonist increases species- and region-selective adult CNS proliferation, but not through CNTF,” Neuropharmacology, vol. 63, pp. 1238–1247, 2012.
[78]
F. Pilar-Cuéllar, R. Vidal, A. Díaz, et al., “Pathways involved in antidepressant-induced proliferation and synaptic plasticity,” Current Pharmaceutical Design. In press.
[79]
G. J. Huang and J. Herbert, “The role of 5-HT1A receptors in the proliferation and survival of progenitor cells in the dentate gyrus of the adult hippocampus and their regulation by corticoids,” Neuroscience, vol. 135, no. 3, pp. 803–813, 2005.
[80]
A. D. Fricker, C. Rios, L. A. Devi, and I. Gomes, “Serotonin receptor activation leads to neurite outgrowth and neuronal survival,” Molecular Brain Research, vol. 138, no. 2, pp. 228–235, 2005.
[81]
S. Jha, R. Rajendran, K. A. Fernandes, and V. A. Vaidya, “5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus,” Neuroscience Letters, vol. 441, no. 2, pp. 210–214, 2008.
[82]
A. Soumier, M. Banasr, S. Lortet et al., “Mechanisms contributing to the phase-dependent regulation of neurogenesis by the novel antidepressant, agomelatine, in the adult rat hippocampus,” Neuropsychopharmacology, vol. 34, no. 11, pp. 2390–2403, 2009.
[83]
F. Pilar-Cuellar, R. Vidal, and A. Pazos, “Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, beta-catenin and antidepressant-like effects,” British Journal of Pharmacology, vol. 165, pp. 1046–1057, 2012.
[84]
A. G. Foley, W. D. Hirst, H. C. Gallagher et al., “The selective 5-HT6 receptor antagonists SB-271046 and SB-399885 potentiate NCAM PSA immunolabeling of dentate granule cells, but not neurogenesis, in the hippocampal formation of mature Wistar rats,” Neuropharmacology, vol. 54, no. 8, pp. 1166–1174, 2008.
[85]
O. Mnie-Filali, C. Faure, L. Lambas-Senas et al., “Pharmacological blockade of 5-HT7 receptors as a putative fast acting antidepressant strategy,” Neuropsychopharmacology, vol. 36, no. 6, pp. 1275–1288, 2011.
[86]
G. Sarkisyan and P. B. Hedlund, “The 5-HT7 receptor is involved in allocentric spatial memory information processing,” Behavioural Brain Research, vol. 202, no. 1, pp. 26–31, 2009.
[87]
J. A. Menninger and B. Tabakoff, “Forskolin-stimulated platelet adenylyl cyclase activity is lower in persons with major depression,” Biological Psychiatry, vol. 42, no. 1, pp. 30–38, 1997.
[88]
E. M. Valdizán, O. Gutierrez, and A. Pazos, “Adenylate cyclase activity in postmortem brain of suicide subjects: reduced response to β-adrenergic stimulation,” Biological Psychiatry, vol. 54, no. 12, pp. 1457–1464, 2003.
[89]
I. Extein, J. Tallman, C. C. Smith, and F. K. Goodwin, “Changes in lymphocyte beta-adrenergic receptors in depression and mania,” Psychiatry Research, vol. 1, no. 2, pp. 191–197, 1979.
[90]
J. P. Halper, R. P. Brown, J. A. Sweeney, J. H. Kocsis, A. Peters, and J. J. Mann, “Blunted β-adrenergic responsivity of peripheral blood mononuclear cells in endogenous depression. Isoproterenol dose-response studies,” Archives of General Psychiatry, vol. 45, no. 3, pp. 241–244, 1988.
[91]
J. J. Mann, J. P. Halper, P. J. Wilner et al., “Subsensitivity of adenylyl cyclase-coupled receptors on mononuclear leukocytes from drug-free inpatients with a major depressive episode,” Biological Psychiatry, vol. 42, no. 10, pp. 859–870, 1997.
[92]
P. Mazzola-Pomietto, J. M. Azorin, V. Tramoni, and R. Jeanningros, “Relation between lymphocyte beta-adrenergic responsivity and the severity of depressive disorders,” Biological Psychiatry, vol. 35, pp. 920–925, 1994.
[93]
G. N. Pandey, P. Sudershan, and J. M. Davis, “Beta adrenergic receptor function in depression and the effect of antidepressant drugs,” Acta Pharmacologica et Toxicologica Supplementum, vol. 56, no. 1, pp. 66–79, 1985.
[94]
E. M. Valdizn, R. Dez-Alarcia, J. Gonzlez-Maeso et al., “α2-adrenoceptor functionality in postmortem frontal cortex of depressed suicide victims,” Biological Psychiatry, vol. 68, no. 9, pp. 869–872, 2010.
[95]
H. Ozawa and M. M. Rasenick, “Chronic electroconvulsive treatment augments coupling of the GTP-binding protein G(s) to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs,” Journal of Neurochemistry, vol. 56, no. 1, pp. 330–338, 1991.
[96]
V. J. Watts and K. A. Neve, “Sensitization of adenylate cyclase by Galpha i/o-coupled receptors,” Pharmacology & Therapeutics, vol. 106, pp. 405–421, 2005.
[97]
R. Vidal, E. M. Valdizan, R. Mostany, A. Pazos, and E. Castro, “Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain,” Journal of Neurochemistry, vol. 110, no. 3, pp. 1120–1127, 2009.
[98]
R. Vidal, E. M. Valdizan, M. T. Vilaro, A. Pazos, and E. Castro, “Reduced signal transduction by 5-HT4 receptors after long-term venlafaxine treatment in rats,” British Journal of Pharmacology, vol. 161, no. 3, pp. 695–706, 2010.
[99]
H. T. Zhang, “Cyclic AMP-specific phosphodiesterase-4 as a target for the development of antidepressant drugs,” Current Pharmaceutical Design, vol. 15, no. 14, pp. 1688–1698, 2009.
[100]
S. Mato, R. Vidal, E. Castro, A. Díaz, A. Pazos, and E. M. Valdizán, “Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine 1A receptor-dependent mechanisms,” Molecular Pharmacology, vol. 77, no. 3, pp. 424–434, 2010.
[101]
E. J. Nestler, R. Z. Terwilliger, and R. S. Duman, “Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex,” Journal of Neurochemistry, vol. 53, no. 5, pp. 1644–1647, 1989.
[102]
J. Alfonso, L. R. Frick, D. M. Silberman, M. L. Palumbo, A. M. Genaro, and A. C. Frasch, “Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments,” Biological Psychiatry, vol. 59, no. 3, pp. 244–251, 2006.
[103]
S. Morley-Fletcher, J. Mairesse, A. Soumier et al., “Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats,” Psychopharmacology, vol. 217, no. 3, pp. 301–313, 2011.
[104]
D. Dowlatshahi, G. M. MacQueen, J. F. Wang, and L. T. Young, “Increased temporal cortex CREB concentrations and antidepressant treatment in major depression,” Lancet, vol. 352, no. 9142, pp. 1754–1755, 1998.
[105]
D. Dowlatshahi, G. M. MacQueen, J. F. Wang, J. S. Reiach, and L. T. Young, “G protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death,” Journal of Neurochemistry, vol. 73, no. 3, pp. 1121–1126, 1999.
[106]
Y. Odagaki, J. A. García-Sevilla, P. Huguelet, R. La Harpe, T. Koyama, and J. Guimón, “Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims,” Brain Research, vol. 898, no. 2, pp. 224–231, 2001.
[107]
S. Yamada, M. Yamamoto, H. Ozawa, P. Riederer, and T. Saito, “Reduced phosphorylation of cyclic AMP-responsive element binding protein in the postmortem orbitofrontal cortex of patients with major depressive disorder,” Journal of Neural Transmission, vol. 110, no. 6, pp. 671–680, 2003.
[108]
D. Laifenfeld, R. Karry, E. Grauer, E. Klein, and D. Ben-Shachar, “Antidepressants and prolonged stress in rats modulate CAM-L1, laminin, and pCREB, implicated in neuronal plasticity,” Neurobiology of Disease, vol. 20, no. 2, pp. 432–441, 2005.
[109]
T. L. Wallace, K. E. Stellitano, R. L. Neve, and R. S. Duman, “Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety,” Biological Psychiatry, vol. 56, no. 3, pp. 151–160, 2004.
[110]
D. H. Manier, R. C. Shelton, and F. Sulser, “Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P?” Journal of Neural Transmission, vol. 109, no. 1, pp. 91–99, 2002.
[111]
A. M. Pliakas, R. R. Carlson, R. L. Neve, C. Konradi, E. J. Nestler, and W. A. Carlezon, “Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens,” Journal of Neuroscience, vol. 21, no. 18, pp. 7397–7403, 2001.
[112]
Y. Dwivedi, A. C. Mondal, H. S. Rizavi et al., “Differential and brain region-specific regulation of Rap-1 and Epac in depressed suicide victims,” Archives of General Psychiatry, vol. 63, no. 6, pp. 639–648, 2006.
[113]
R. Liu, W. Dang, M. Jianting et al., “Citalopram alleviates chronic stress induced depression-like behaviors in rats by activating GSK3 beta signaling in dorsal hippocampus,” Brain Research, vol. 1467, pp. 10–17, 2012.
[114]
G. Chen, L. D. Huang, Y. M. Jiang, and H. K. Manji, “The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3,” Journal of Neurochemistry, vol. 72, no. 3, pp. 1327–1330, 1999.
[115]
T. D. Gould, G. Chen, and H. K. Manji, “In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3,” Neuropsychopharmacology, vol. 29, no. 1, pp. 32–38, 2004.
[116]
X. Li, W. Zhu, M. S. Roh, A. B. Friedman, K. Rosborough, and R. S. Jope, “In vivo regulation of glycogen synthase kinase-3β (GSK3β) by serotonergic activity in mouse brain,” Neuropsychopharmacology, vol. 29, no. 8, pp. 1426–1431, 2004.
[117]
J. M. Beaulieu, X. Zhang, R. M. Rodriguiz et al., “Role of GSK3β in behavioral abnormalities induced by serotonin deficiency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1333–1338, 2008.
[118]
O. Kaidanovich-Beilin, A. Milman, A. Weizman, C. G. Pick, and H. Eldar-Finkelman, “Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on β-catenin in mouse hippocampus,” Biological Psychiatry, vol. 55, no. 8, pp. 781–784, 2004.
[119]
W. T. O'Brien, A. D. Harper, F. Jové et al., “Glycogen synthase kinase-3β haploinsufficiency mimics the behavioral and molecular effects of lithium,” Journal of Neuroscience, vol. 24, no. 30, pp. 6791–6798, 2004.
[120]
C. Latapy, V. Rioux, M. J. Guitton, and J. M. Beaulieu, “Selective deletion of forebrain glycogen synthase kinase 3beta reveals a central role in serotonin-sensitive anxiety and social behaviour,” Philosophical Transactions of the Royal Society B, vol. 367, pp. 2460–2474, 2012.
[121]
A. Polter, E. Beurel, S. Yang et al., “Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances,” Neuropsychopharmacology, vol. 35, no. 8, pp. 1761–1774, 2010.
[122]
F. Benedetti, A. Serretti, C. Colombo, C. Lorenzi, V. Tubazio, and E. Smeraldi, “A glycogen synthase kinase 3-β promoter gene single nucleotide polymorphism is associated with age at onset and response to total sleep deprivation in bipolar depression,” Neuroscience Letters, vol. 368, no. 2, pp. 123–126, 2004.
[123]
F. Benedetti, S. Dallaspezia, C. Lorenzi et al., “Gene-gene interaction of glycogen synthase kinase 3-beta and serotonin transporter on human antidepressant response to sleep deprivation,” Journal of Affective Disorders, vol. 136, pp. 514–519, 2012.
[124]
F. Karege, N. Perroud, S. Burkhardt et al., “Protein levels of beta-catenin and activation state of glycogen synthase kinase-3beta in major depression. A study with postmortem prefrontal cortex,” Journal of Affective Disorders, vol. 136, pp. 185–188, 2012.
[125]
T. D. Gould, K. C. O'Donnell, A. M. Picchini, E. R. Dow, G. Chen, and H. K. Manji, “Generation and behavioral characterization of β-catenin forebrain-specific conditional knock-out mice,” Behavioural Brain Research, vol. 189, no. 1, pp. 117–125, 2008.
[126]
T. D. Gould, H. Einat, K. C. O'Donnell, A. M. Picchini, R. J. Schloesser, and H. K. Manji, “Β-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors,” Neuropsychopharmacology, vol. 32, no. 10, pp. 2173–2183, 2007.
[127]
K. R. Howell, A. Kutiyanawalla, and A. Pillai, “Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex,” PLoS ONE, vol. 6, no. 5, Article ID e20198, 2011.
[128]
L. Sui, J. Wang, and B. M. Li, “Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex,” Learning and Memory, vol. 15, no. 10, pp. 762–776, 2008.
[129]
A. Chandran, A. H. Iyo, C. S. Jernigan, B. Legutko, M. C. Austin, and B. Karolewicz, “Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 40, pp. 240–245, 2013.
[130]
J. J. Yu, Y. Zhang, Y. Wang et al., “Inhibition of calcineurin in the prefrontal cortex induced depressive-like behavior through mTOR signaling pathway,” Psychopharmacology, vol. 225, pp. 361–372, 2013.
[131]
S. J. Mathew, K. Keegan, and L. Smith, “Glutamate modulators as novel interventions for mood disorders,” Revista Brasileira de Psiquiatria, vol. 27, no. 3, pp. 243–248, 2005.
[132]
J. M. Brezun and A. Daszuta, “Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats,” Hippocampus, vol. 10, pp. 37–46, 2000.
[133]
D. S. Cowen, L. F. Takase, C. A. Fornal, and B. L. Jacobs, “Age-dependent decline in hippocampal neurogenesis is not altered by chronic treatment with fluoxetine,” Brain Research C, vol. 1228, pp. 14–19, 2008.
[134]
M. W. Marlatt, P. J. Lucassen, and H. van Praag, “Comparison of neurogenic effects of fluoxetine, duloxetine and running in mice,” Brain Research C, vol. 1341, pp. 93–99, 2010.
[135]
N. D. Hanson, C. B. Nemeroff, and M. J. Owens, “Lithium, but not fluoxetine or the corticotropin-releasing factor receptor 1 receptor antagonist R121919, increases cell proliferation in the adult dentate gyrus,” Journal of Pharmacology and Experimental Therapeutics, vol. 337, no. 1, pp. 180–186, 2011.
[136]
J. J. Radley and B. L. Jacobs, “5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus,” Brain Research, vol. 955, no. 1-2, pp. 264–267, 2002.
[137]
G. J. Marek, L. L. Carpenter, C. J. McDougle, and L. H. Price, “Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders,” Neuropsychopharmacology, vol. 28, no. 2, pp. 402–412, 2003.
[138]
D. K. Pandey, R. Mahesh, A. A. Kumar, V. S. Rao, M. Arjun, and R. Rajkumar, “A novel 5-HT(2A) receptor antagonist exhibits antidepressant-like effects in a battery of rodent behavioural assays: approaching early-onset antidepressants,” Pharmacology Biochemistry and Behavior, vol. 94, no. 3, pp. 363–373, 2010.
[139]
V. A. Vaidya, R. M. Z. Terwilliger, and R. S. Duman, “Role of 5-HT(2a) receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus,” Neuroscience Letters, vol. 262, no. 1, pp. 1–4, 1999.
[140]
A. I. Gulyas, L. Acsady, and T. F. Freund, “Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus,” Neurochemistry International, vol. 34, pp. 359–372, 1999.
[141]
P. Rosel, B. Arranz, M. Urretavizcaya, M. Oros, L. San, and M. A. Navarro, “Altered 5-HT2A and 5-HT4 postsynaptic receptors and their intracellular signalling systems IP3 and cAmP in brains from depressed violent suicide victims,” Neuropsychobiology, vol. 49, no. 4, pp. 189–195, 2004.
[142]
A. Weso?owska, “Potential role of the 5-HT6 receptor in depression and anxiety: an overview of preclinical data,” Pharmacological Reports, vol. 62, no. 4, pp. 564–577, 2010.
[143]
A. Weso?owska and A. Nikiforuk, “Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression,” Neuropharmacology, vol. 52, no. 5, pp. 1274–1283, 2007.
[144]
A. Weso?owska and A. Nikiforuk, “The selective 5-HT6 receptor antagonist SB-399885 enhances anti-immobility action of antidepressants in rats,” European Journal of Pharmacology, vol. 582, no. 1–3, pp. 88–93, 2008.
[145]
A. Weso?owska, A. Nikiforuk, and K. Stachowicz, “Anxiolytic-like and antidepressant-like effects produced by the selective 5-HT6 receptor antagonist SB-258585 after intrahippocampal administration to rats,” Behavioural Pharmacology, vol. 18, no. 5-6, pp. 439–446, 2007.
[146]
C. K. Callaghan, V. Hok, A. Della-Chiesa, D. J. Virley, N. Upton, and S. M. O'Mara, “Age-related declines in delayed non-match-to-sample performance (DNMS) are reversed by the novel 5HT6 receptor antagonist SB742457,” Neuropharmacology, vol. 63, pp. 890–897, 2012.
[147]
O. Mnie-Filali, L. Lambás-Se?as, L. Zimmer, and N. Haddjeri, “5-HT7 receptor antagonists as a new class of antidepressants,” Drug News and Perspectives, vol. 20, no. 10, pp. 613–618, 2007.
[148]
S. M. Stahl, “The serotonin-7 receptor as a novel therapeutic target,” Journal of Clinical Psychiatry, vol. 71, no. 11, pp. 1414–1415, 2010.
[149]
P. B. Hedlund, S. Huitron-Resendiz, S. J. Henriksen, and J. G. Sutcliffe, “5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern,” Biological Psychiatry, vol. 58, no. 10, pp. 831–837, 2005.
[150]
E. Alvarez, V. Perez, M. Dragheim, H. Loft, and F. Artigas, “A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder,” International Journal of Neuropsychopharmacology, vol. 15, pp. 589–600, 2012.
[151]
F. Calabrese, R. Molteni, G. Racagni, and M. A. Riva, “Neuronal plasticity: a link between stress and mood disorders,” Psychoneuroendocrinology, vol. 34, supplement 1, pp. S208–S216, 2009.
[152]
D. Taliaz, A. Loya, R. Gersner, S. Haramati, A. Chen, and A. Zangen, “Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor,” Journal of Neuroscience, vol. 31, no. 12, pp. 4475–4483, 2011.
[153]
K. Hashimoto, “Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions,” Psychiatry and Clinical Neurosciences, vol. 64, no. 4, pp. 341–357, 2010.
[154]
S. Sen, R. Duman, and G. Sanacora, “Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications,” Biological Psychiatry, vol. 64, no. 6, pp. 527–532, 2008.
[155]
W. Umene-Nakano, R. Yoshimura, A. Ikenouchi-Sugita et al., “Serum levels of brain-derived neurotrophic factor in comorbidity of depression and alcohol dependence,” Human Psychopharmacology, vol. 24, no. 5, pp. 409–413, 2009.
[156]
A. S. Gonul, F. Akdeniz, F. Taneli, O. Donat, C. Eker, and S. Vahip, “Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients,” European Archives of Psychiatry and Clinical Neuroscience, vol. 255, no. 6, pp. 381–386, 2005.
[157]
Y. K. Kim, H. P. Lee, S. D. Won et al., “Low plasma BDNF is associated with suicidal behavior in major depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 1, pp. 78–85, 2007.
[158]
L. M. Monteggia, M. Barrot, C. M. Powell et al., “Essential role of brain-derived neurotrophic factor in adult hippocampal function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10827–10832, 2004.
[159]
Z. Y. Chen, D. Jing, K. G. Bath et al., “Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior,” Science, vol. 314, no. 5796, pp. 140–143, 2006.
[160]
M. Adachi, M. Barrot, A. E. Autry, D. Theobald, and L. M. Monteggia, “Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy,” Biological Psychiatry, vol. 63, no. 7, pp. 642–649, 2008.
[161]
J. A. Siuciak, D. R. Lewis, S. J. Wiegand, and R. M. Lindsay, “Antidepressant-like effect of brain-derived neurotrophic factor (BDNF),” Pharmacology Biochemistry and Behavior, vol. 56, no. 1, pp. 131–137, 1997.
[162]
B. A. Hoshaw, J. E. Malberg, and I. Lucki, “Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects,” Brain Research, vol. 1037, no. 1-2, pp. 204–208, 2005.
[163]
Y. Shirayama, A. C. H. Chen, S. Nakagawa, D. S. Russell, and R. S. Duman, “Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression,” Journal of Neuroscience, vol. 22, no. 8, pp. 3251–3261, 2002.
[164]
Y. Ye, G. Wang, H. Wang, and X. Wang, “Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression,” Neuroscience Letters, vol. 503, pp. 15–19, 2011.
[165]
H. D. Schmidt and R. S. Duman, “Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models,” Neuropsychopharmacology, vol. 35, no. 12, pp. 2378–2391, 2010.
[166]
A. Tadi?, S. Wagner, K. F. Schlicht et al., “The early non-increase of serum BDNF predicts failure of antidepressant treatment in patients with major depression: a pilot study,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 2, pp. 415–420, 2011.
[167]
R. S. Duman and L. M. Monteggia, “A neurotrophic model for stress-related mood disorders,” Biological Psychiatry, vol. 59, no. 12, pp. 1116–1127, 2006.
[168]
V. A. Vaidya, G. J. Marek, G. K. Aghajanian, and R. S. Duman, “5-HT(2A) receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex,” Journal of Neuroscience, vol. 17, no. 8, pp. 2785–2795, 1997.
[169]
S. H. Choi, Y. Li, L. F. Parada, and S. S. Sisodia, “Regulation of hippocampal progenitor cell survival, proliferation and dendritic development by BDNF,” Molecular Neurodegeneration, vol. 4, no. 1, article 52, 2009.
[170]
H. Son, M. Banasr, M. Choi et al., “Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 28, pp. 11378–11383, 2012.
[171]
M. N. Alme, K. Wibrand, G. Dagestad, and C. R. Bramham, “Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation,” Neural Plasticity, vol. 2007, Article ID 26496, 9 pages, 2007.
[172]
M. F. Egan, M. Kojima, J. H. Callicott et al., “The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function,” Cell, vol. 112, no. 2, pp. 257–269, 2003.
[173]
S. Sen, R. M. Nesse, S. F. Stoltenberg et al., “A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression,” Neuropsychopharmacology, vol. 28, no. 2, pp. 397–401, 2003.
[174]
M. Verhagen, A. Van Der Meij, P. M. Van Deurzen et al., “Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity,” Molecular Psychiatry, vol. 15, no. 3, pp. 260–271, 2010.
[175]
H. Yu, D. D. Wang, Y. Wang, T. Liu, F. S. Lee, and Z. Y. Chen, “Variant brain-derived neurotrophic factor Val66Met polymorphism alters vulnerability to stress and response to antidepressants,” Journal of Neuroscience, vol. 32, no. 12, pp. 4092–4101, 2012.
[176]
N. A. Kocabas, I. Antonijevic, C. Faghel et al., “Brain-derived neurotrophic factor gene polymorphisms: influence on treatment response phenotypes of major depressive disorder,” International Clinical Psychopharmacology, vol. 26, pp. 1–10, 2011.
[177]
T. D. Palmer, A. R. Willhoite, and F. H. Gage, “Vascular niche for adult hippocampal neurogenesis,” Journal of Comparative Neurology, vol. 425, pp. 479–494, 2000.
[178]
J. L. Warner-Schmidt, T. M. Madsen, and R. S. Duman, “Electroconvulsive seizure restores neurogenesis and hippocampus-dependent fear memory after disruption by irradiation,” European Journal of Neuroscience, vol. 27, no. 6, pp. 1485–1493, 2008.
[179]
V. M. Heine, J. Zareno, S. Maslam, M. Jo?ls, and P. J. Lucassen, “Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression,” European Journal of Neuroscience, vol. 21, no. 5, pp. 1304–1314, 2005.
[180]
T. Kiuchi, H. Lee, and T. Mikami, “Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice,” Neuroscience, vol. 207, pp. 208–217, 2012.
[181]
S. S. Newton, E. F. Collier, J. Hunsberger et al., “Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors,” Journal of Neuroscience, vol. 23, no. 34, pp. 10841–10851, 2003.
[182]
C. A. Altar, P. Laeng, L. W. Jurata et al., “Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways,” Journal of Neuroscience, vol. 24, no. 11, pp. 2667–2677, 2004.
[183]
R. Sun, N. Li, and T. Li, “VEGF regulates antidepressant effects of lamotrigine,” European Neuropsychopharmacology, vol. 22, pp. 424–430, 2012.
[184]
J. S. Lee, D. J. Jang, N. Lee et al., “Induction of neuronal vascular endothelial growth factor expression by cAMP in the dentate gyrus of the hippocampus is required for antidepressant-like behaviors,” Journal of Neuroscience, vol. 29, no. 26, pp. 8493–8505, 2009.
[185]
M. Ventriglia, R. Zanardini, L. Pedrini et al., “VEGF serum levels in depressed patients during SSRI antidepressant treatment,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 1, pp. 146–149, 2009.
[186]
Z. Halmai, P. Dome, J. Dobos et al., “Peripheral vascular endothelial growth factor level is associated with antidepressant treatment response: results of a preliminary study,” Journal of Affective Disorders, vol. 144, pp. 269–273, 2013.
[187]
D. S. Cowen, “Serotonin and neuronal growth factors—a convergence of signaling pathways,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1161–1171, 2007.
[188]
J. Peltier, A. O'Neill, and D. V. Schaffer, “PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation,” Developmental Neurobiology, vol. 67, no. 10, pp. 1348–1361, 2007.
[189]
T. D. Gould and H. K. Manji, “Signaling networks in the pathophysiology and treatment of mood disorders,” Journal of Psychosomatic Research, vol. 53, pp. 687–697, 2002.
[190]
J. A. Blendy, “The role of CREB in depression and antidepressant treatment,” Biological Psychiatry, vol. 59, no. 12, pp. 1144–1150, 2006.
[191]
A. J. Shaywitz and M. E. Greenberg, “CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals,” Annual Review of Biochemistry, vol. 68, pp. 821–861, 1999.
[192]
H. Viola, M. Furman, L. A. Izquierdo et al., “Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty,” The Journal of Neuroscience, vol. 20, no. 23, article RC112, 2000.
[193]
G. E. Hardingham, F. J. L. Arnold, and H. Bading, “Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity,” Nature Neuroscience, vol. 4, no. 3, pp. 261–267, 2001.
[194]
B. E. Lonze and D. D. Ginty, “Function and regulation of CREB family transcription factors in the nervous system,” Neuron, vol. 35, no. 4, pp. 605–623, 2002.
[195]
W. A. Carlezon Jr., R. S. Duman, and E. J. Nestler, “The many faces of CREB,” Trends in Neurosciences, vol. 28, no. 8, pp. 436–445, 2005.
[196]
O. Valverde, T. Mantamadiotis, M. Torrecilla et al., “Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice,” Neuropsychopharmacology, vol. 29, no. 6, pp. 1122–1133, 2004.
[197]
M. Nibuya, E. J. Nestler, and R. S. Duman, “Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus,” Journal of Neuroscience, vol. 16, no. 7, pp. 2365–2372, 1996.
[198]
T. D. Perera, S. Park, and Y. Nemirovskaya, “Cognitive role of neurogenesis in depression and antidepressant treatment,” Neuroscientist, vol. 14, no. 4, pp. 326–338, 2008.
[199]
M. Johannessen, M. P. Delghandi, and U. Moens, “What turns CREB on?” Cellular Signalling, vol. 16, no. 11, pp. 1211–1227, 2004.
[200]
W. Y. Kim, X. Wang, Y. Wu et al., “GSK-3 is a master regulator of neural progenitor homeostasis,” Nature Neuroscience, vol. 12, pp. 1390–1397, 2009.
[201]
F. Li, Z. Z. Chong, and K. Maiese, “Vital elements of the Wnt-frizzled signaling pathway in the nervous system,” Current Neurovascular Research, vol. 2, no. 4, pp. 331–340, 2005.
[202]
L. Ciani and P. C. Salinas, “WNTs in the vertebrate nervous system: from patterning to neuronal connectivity,” Nature Reviews Neuroscience, vol. 6, no. 5, pp. 351–362, 2005.
[203]
J. Galceran, E. M. Miyashita-Lin, E. Devaney, J. L. R. Rubenstein, and R. Grosschedl, “Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1,” Development, vol. 127, no. 3, pp. 469–482, 2000.
[204]
C. J. Zhou, C. Zhao, and S. J. Pleasure, “Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities,” Journal of Neuroscience, vol. 24, no. 1, pp. 121–126, 2004.
[205]
X. Yu and R. C. Malenka, “Beta-catenin is critical for dendritic morphogenesis,” Nature Neuroscience, vol. 6, pp. 1169–1177, 2003.
[206]
X. Gao, P. Arlotta, J. D. Macklis, and J. Chen, “Conditional knock-out of β-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation,” Journal of Neuroscience, vol. 27, no. 52, pp. 14317–14325, 2007.
[207]
A. A. Zaghetto, S. Paina, S. Mantero et al., “Activation of the Wnt-βcatenin pathway in a cell population on the surface of the forebrain is essential for the establishment of olfactory axon connections,” Journal of Neuroscience, vol. 27, no. 36, pp. 9757–9768, 2007.
[208]
S. A. Purro, L. Ciani, M. Hoyos-Flight, E. Stamatakou, E. Siomou, and P. C. Salinas, “Wnt regulates axon behavior through changes in microtubule growth directionality: a new role for adenomatous polyposis coli,” Journal of Neuroscience, vol. 28, no. 34, pp. 8644–8654, 2008.
[209]
S. X. Bamji, K. Shimazu, N. Kimes et al., “Role of β-catenin in synaptic vesicle localization and presynaptic assembly,” Neuron, vol. 40, no. 4, pp. 719–731, 2003.
[210]
F. Hernández, J. Borrell, C. Guaza, J. Avila, and J. J. Lucas, “Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments,” Journal of Neurochemistry, vol. 83, no. 6, pp. 1529–1533, 2002.
[211]
C. Yost, M. Torres, J. R. Miller, E. Huang, D. Kimelman, and R. T. Moon, “The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3,” Genes and Development, vol. 10, no. 12, pp. 1443–1454, 1996.
[212]
H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, “β-catenin is a target for the ubiquitin-proteasome pathway,” EMBO Journal, vol. 16, no. 13, pp. 3797–3804, 1997.
[213]
L. Li, H. Yuan, C. D. Weaver et al., “Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1,” EMBO Journal, vol. 18, no. 15, pp. 4233–4240, 1999.
[214]
C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 781–810, 2004.
[215]
R. S. Jope and G. N. Bijur, “Mood stabilizers, glycogen synthase kinase-3β and cell survival,” Molecular Psychiatry, vol. 7, supplement 1, pp. S35–S45, 2002.
[216]
F. Hernández, J. D. Nido, J. Avila, and N. Villanueva, “GSK3 inhibitors and disease,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 9, pp. 1024–1029, 2009.
[217]
P. S. Klein and D. A. Melton, “A molecular mechanism for the effect of lithium on development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, pp. 8455–8459, 1996.
[218]
A. Wada, H. Yokoo, T. Yanagita, and H. Kobayashi, “Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases,” Journal of Pharmacological Sciences, vol. 99, no. 4, pp. 307–321, 2005.
[219]
T. Y. Eom and R. S. Jope, “Blocked inhibitory serine-phosphorylation of glycogen synthase kinase-3alpha/beta impairs in vivo neural precursor cell proliferation,” Biological Psychiatry, vol. 66, no. 5, pp. 494–502, 2009.
[220]
D. C. Lie, S. A. Colamarino, H. J. Song et al., “Wnt signalling regulates adult hippocampal neurogenesis,” Nature, vol. 437, no. 7063, pp. 1370–1375, 2005.
[221]
E. M. Wexler, P. Andres, H. I. Kornblum, T. D. Palmer, and D. H. Geschwind, “Endogenous Wnt signaling maintains neural progenitor cell potency,” Stem Cells, vol. 27, no. 5, pp. 1130–1141, 2009.
[222]
K. Adachi, Z. Mirzadeh, M. Sakaguchi et al., “β-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone,” Stem Cells, vol. 25, no. 11, pp. 2827–2836, 2007.
[223]
N. Uchida, Y. Honjo, K. R. Johnson, M. J. Wheelock, and M. Takeichi, “The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones,” Journal of Cell Biology, vol. 135, no. 3, pp. 767–779, 1996.
[224]
F. Miskevich, Y. Zhu, B. Ranscht, and J. R. Sanes, “Expression of multiple cadherins and catenins in the chick optic tectum,” Molecular and Cellular Neurosciences, vol. 12, no. 4-5, pp. 240–255, 1998.
[225]
I. Yao, J. Iida, N. Tanaka, Y. Hata, T. Medical, and D. University, “Interaction of synaptic scaffolding molecule and β-catenin,” Journal of Neuroscience, vol. 22, no. 3, pp. 757–765, 2002.
[226]
W. J. Nelson and R. Nusse, “Convergence of Wnt, beta-catenin, and cadherin pathways,” Science, vol. 303, no. 5663, pp. 1483–1487, 2004.
[227]
H. Togashi, K. Abe, A. Mizoguchi, K. Takaoka, O. Chisaka, and M. Takeichi, “Cadherin regulates dendritic spine morphogenesis,” Neuron, vol. 35, no. 1, pp. 77–89, 2002.
[228]
S. P. Shevtsov, S. Haq, and T. Force, “Activation of β-catenin signaling pathways by classical G-protein-coupled receptors: mechanisms and consequences in cycling and non-cycling cells,” Cell Cycle, vol. 5, no. 20, pp. 2295–2300, 2006.
[229]
T. Jin, I. George Fantus, and J. Sun, “Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of β-catenin,” Cellular Signalling, vol. 20, no. 10, pp. 1697–1704, 2008.
[230]
J. Kunz, R. Henriquez, U. Schneider, M. Deuter-Reinhard, N. R. Movva, and M. N. Hall, “Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression,” Cell, vol. 73, no. 3, pp. 585–596, 1993.
[231]
J. Heitman, N. R. Movva, and M. N. Hall, “Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast,” Science, vol. 253, no. 5022, pp. 905–909, 1991.
[232]
S. B. Helliwell, P. Wagner, J. Kunz, M. Deuter-Reinhard, R. Henriquez, and M. N. Hall, “TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast,” Molecular Biology of the Cell, vol. 5, no. 1, pp. 105–118, 1994.
[233]
R. Loewith, E. Jacinto, S. Wullschleger et al., “Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control,” Molecular Cell, vol. 10, no. 3, pp. 457–468, 2002.
[234]
E. Jacinto, R. Loewith, A. Schmidt et al., “Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive,” Nature Cell Biology, vol. 6, no. 11, pp. 1122–1128, 2004.
[235]
T. Takahara, K. Hara, K. Yonezawa, H. Sorimachi, and T. Maeda, “Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region,” Journal of Biological Chemistry, vol. 281, no. 39, pp. 28605–28614, 2006.
[236]
F. C. Harwood, L. Shu, and P. J. Houghton, “mTORC1 signaling can regulate growth factor activation of p44/42 mitogen-activated protein kinases through protein phosphatase 2A,” Journal of Biological Chemistry, vol. 283, no. 5, pp. 2575–2585, 2008.
[237]
N. Hosokawa, T. Hara, T. Kaizuka et al., “Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1981–1991, 2009.
[238]
C. A. Hoeffer and E. Klann, “mTOR signaling: at the crossroads of plasticity, memory and disease,” Trends in Neurosciences, vol. 33, no. 2, pp. 67–75, 2010.
[239]
M. Livingstone, E. Atas, A. Meller, and N. Sonenberg, “Mechanisms governing the control of mRNA translation,” Physical Biology, vol. 7, no. 2, Article ID 021001, 2010.
[240]
N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes and Development, vol. 18, no. 16, pp. 1926–1945, 2004.
[241]
R. Gong, S. P. Chang, N. R. Abbassi, and S. J. Tang, “Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons,” Journal of Biological Chemistry, vol. 281, no. 27, pp. 18802–18815, 2006.
[242]
S. J. Tang, G. Reis, H. Kang, A. C. Gingras, N. Sonenberg, and E. M. Schuman, “A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 467–472, 2002.
[243]
R. S. Duman, N. Li, R. J. Liu, V. Duric, and G. Aghajanian, “Signaling pathways underlying the rapid antidepressant actions of ketamine,” Neuropharmacology, vol. 62, pp. 35–41, 2012.
[244]
Z. Z. Chong, Y. C. Shang, L. Zhang, S. Wang, and K. Maiese, “Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 6, pp. 374–391, 2010.
[245]
W. L. An, R. F. Cowburn, L. Li et al., “Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease,” American Journal of Pathology, vol. 163, pp. 591–607, 2003.
[246]
W. L. Zhu, H. S. Shi, S. J. Wang, P. Wu, Z. B. Ding, and L. Lu, “Hippocampal CA3 calcineurin activity participates in depressive-like behavior in rats,” Journal of Neurochemistry, vol. 117, no. 6, pp. 1075–1086, 2011.
[247]
C. S. Jernigan, D. B. Goswami, M. C. Austin et al., “The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 7, pp. 1774–1779, 2011.
[248]
C. Cleary, J. A. S. Linde, K. M. Hiscock et al., “Antidepressive-like effects of rapamycin in animal models: implications for mTOR inhibition as a new target for treatment of affective disorders,” Brain Research Bulletin, vol. 76, no. 5, pp. 469–473, 2008.
[249]
S. C. Yoon, M. S. Seo, S. H. Kim et al., “The effect of MK-801 on mTOR/p70S6K and translation-related proteins in rat frontal cortex,” Neuroscience Letters, vol. 434, no. 1, pp. 23–28, 2008.
[250]
S. Maeng, C. A. Zarate Jr., J. Du et al., “Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors,” Biological Psychiatry, vol. 63, no. 4, pp. 349–352, 2008.
[251]
H. Koike, M. Iijima, and S. Chaki, “Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists,” Neuropharmacology, vol. 61, pp. 1419–1423, 2011.
[252]
C. Yang, Y. M. Hu, Z. Q. Zhou, G. F. Zhang, and J. J. Yang, “Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test,” Upsala Journal of Medical Sciences, vol. 118, no. 1, pp. 3–8, 2013.
[253]
C. A. Zarate Jr., J. B. Singh, P. J. Carlson et al., “A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression,” Archives of General Psychiatry, vol. 63, no. 8, pp. 856–864, 2006.
[254]
B. Elfving and G. Wegener, “Electroconvulsive seizures stimulate the vegf pathway via mTORC1,” Synapse, vol. 66, pp. 340–345, 2012.
[255]
J. M. Dwyer, A. E. Lepack, and R. S. Duman, “mTOR activation is required for the antidepressant effects of mGluR(2)/(3) blockade,” International Journal of Neuropsychopharmacology, vol. 15, pp. 429–434, 2012.
[256]
A. J. Eisch, “Adult neurogenesis: implications for psychiatry,” Progress in Brain Research, vol. 138, pp. 315–342, 2002.
[257]
Y. Li, B. W. Luikart, S. Birnbaum et al., “TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment,” Neuron, vol. 59, no. 3, pp. 399–412, 2008.
[258]
C. Pittenger and R. S. Duman, “Stress, depression, and neuroplasticity: a convergence of mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 88–109, 2008.
[259]
E. Fuchs, B. Czéh, M. H. P. Kole, T. Michaelis, and P. J. Lucassen, “Alterations of neuroplasticity in depression: the hippocampus and beyond,” European Neuropsychopharmacology, vol. 14, supplement 5, pp. S481–S490, 2004.
[260]
Y. Watanabe, E. Gould, and B. S. McEwen, “Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons,” Brain Research, vol. 588, no. 2, pp. 341–345, 1992.
[261]
S. D. Norrholm and C. C. Ouimet, “Altered dendritic spine density in animal models of depression and in response to antidepressant treatment,” Synapse, vol. 42, no. 3, pp. 151–163, 2001.
[262]
S. Nakagawa, J. E. Kim, R. Lee et al., “Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein,” Journal of Neuroscience, vol. 22, no. 9, pp. 3673–3682, 2002.
[263]
D. J. Christoffel, S. A. Golden, and S. J. Russo, “Structural and synaptic plasticity in stress-related disorders,” Annual Review of Neuroscience, vol. 22, pp. 535–549, 2011.
[264]
S. R. Lamont, B. J. Stanwell, R. Hill, I. C. Reid, and C. A. Stewart, “Ketamine pre-treatment dissociates the effects of electroconvulsive stimulation on mossy fibre sprouting and cellular proliferation in the dentate gyrus,” Brain Research, vol. 1053, no. 1-2, pp. 27–32, 2005.