全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microglia Control Neuronal Network Excitability via BDNF Signalling

DOI: 10.1155/2013/429815

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microglia-neuron interactions play a crucial role in several neurological disorders characterized by altered neural network excitability, such as epilepsy and neuropathic pain. While a series of potential messengers have been postulated as substrates of the communication between microglia and neurons, including cytokines, purines, prostaglandins, and nitric oxide, the specific links between messengers, microglia, neuronal networks, and diseases have remained elusive. Brain-derived neurotrophic factor (BDNF) released by microglia emerges as an exception in this riddle. Here, we review the current knowledge on the role played by microglial BDNF in controlling neuronal excitability by causing disinhibition. The efforts made by different laboratories during the last decade have collectively provided a robust mechanistic paradigm which elucidates the mechanisms involved in the synthesis and release of BDNF from microglia, the downstream TrkB-mediated signals in neurons, and the biophysical mechanism by which disinhibition occurs, via the downregulation of the K+-Cl? cotransporter KCC2, dysrupting Cl?homeostasis, and hence the strength of - and glycine receptor-mediated inhibition. The resulting altered network activity appears to explain several features of the associated pathologies. Targeting the molecular players involved in this canonical signaling pathway may lead to novel therapeutic approach for ameliorating a wide array of neural dysfunctions. 1. Introduction Once simply considered as the “guardians” of the central nervous system (CNS), microglia have more recently emerged as key players in regulating neuronal network excitability. Indeed, physical and chemical alterations in the extracellular environment promote the synthesis and release of several microglia-derived molecules which, in turn, shape neuronal circuit function. The effects of such microglia-neuron interactions were found to be critical in the course of different central disorders, and in particular seminal studies provided significant evidence for a role of microglia in the pathogenesis of seizures (for review see [1, 2]) which was associated with increased glutamatergic transmission through the potentiation of NMDA receptor-mediated activity [3]. However, from a theoretical point of view, raising network excitability can be equally achieved through increasing excitatory inputs or removing inhibitory ones. In fact, unmasking silent interconnections can be better achieved through disinhibition than enhanced excitation. Furthermore, disinhibition has been shown as an upstream substrate of

References

[1]  A. Vezzani, J. French, T. Bartfai, and T. Z. Baram, “The role of inflammation in epilepsy,” Nature Reviews Neurology, vol. 7, no. 1, pp. 31–40, 2011.
[2]  B. Viviani, F. Gardoni, and M. Marinovich, “Cytokines and neuronal ion channels in health and disease,” International Review of Neurobiology, vol. 82, pp. 247–263, 2007.
[3]  B. Viviani, S. Bartesaghi, F. Gardoni et al., “Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases,” Journal of Neuroscience, vol. 23, no. 25, pp. 8692–8700, 2003.
[4]  H. Fiumelli and M. A. Woodin, “Role of activity-dependent regulation of neuronal chloride homeostasis in development,” Current Opinion in Neurobiology, vol. 17, no. 1, pp. 81–86, 2007.
[5]  A. Harauzov, M. Spolidoro, G. DiCristo et al., “Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity,” Journal of Neuroscience, vol. 30, no. 1, pp. 361–371, 2010.
[6]  D. M. Kullmann, A. W. Moreau, Y. Bakiri, and E. Nicholson, “Plasticity of inhibition,” Neuron, vol. 75, no. 6, pp. 951–962, 2012.
[7]  C. Labrakakis, F. Ferrini, and Y. de Koninck, “Mechanisms of plasticity of inhibition in chronic pain conditions,” in Inhibitory Synaptic Plasticity, pp. 91–105, Springer, New York, NY, USA, 2011.
[8]  N. Doyon, S. A. Prescott, A. Castonguay, A. G. Godin, H. Kr?ger, and Y. de Koninck, “Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis,” PLoS Computational Biology, vol. 7, no. 9, Article ID e1002149, 2011.
[9]  S. A. Prescott, T. J. Sejnowski, and Y. de Koninck, “Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain,” Molecular Pain, vol. 2, article 32, 2006.
[10]  Y. de Koninck, “Altered chloride homeostasis in neurological disorders: a new target,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 93–99, 2007.
[11]  P. Blaesse, M. S. Airaksinen, C. Rivera, and K. Kaila, “Cation-chloride cotransporters and neuronal function,” Neuron, vol. 61, no. 6, pp. 820–838, 2009.
[12]  T. J. Price, F. Cervero, and Y. de Koninck, “Role of cation-chloride-cotransporters (CCC) in pain and hyperalgesia,” Current Topics in Medicinal Chemistry, vol. 5, no. 6, pp. 547–555, 2005.
[13]  J. A. Payne, T. J. Stevenson, and L. F. Donaldson, “Molecular characterization of a putative K-Cl cotransporter in rat brain: a neuronal-specific isoform,” Journal of Biological Chemistry, vol. 271, no. 27, pp. 16245–16252, 1996.
[14]  C. Rivera, J. Voipio, J. A. Payne et al., “The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation,” Nature, vol. 397, no. 6716, pp. 251–255, 1999.
[15]  M. Cordero-Erausquin, J. A. M. Coull, D. Boudreau, M. Rolland, and Y. de Koninck, “Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity,” Journal of Neuroscience, vol. 25, no. 42, pp. 9613–9623, 2005.
[16]  C. Rivera, J. Voipio, and K. Kaila, “Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII,” Journal of Physiology, vol. 562, part 1, pp. 27–36, 2005.
[17]  Y. Ben-Ari, J.-L. Gaiarsa, R. Tyzio, and R. Khazipov, “GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations,” Physiological Reviews, vol. 87, no. 4, pp. 1215–1284, 2007.
[18]  A. Stil, C. Jean-Xavier, S. Liabeuf et al., “Contribution of the potassium-chloride co-transporter KCC2 to the modulation of lumbar spinal networks in mice,” European Journal of Neuroscience, vol. 33, no. 7, pp. 1212–1222, 2011.
[19]  J. H. Chancey, E. W. Adlaf, M. C. Sapp, et al., “GABA depolarization is required for experience-dependent synapse unsilencing in adult-born neurons,” Journal of Neuroscience, vol. 33, no. 15, pp. 6614–6622, 2013.
[20]  S. Ge, D. A. Pradhan, G.-L. Ming, and H. Song, “GABA sets the tempo for activity-dependent adult neurogenesis,” Trends in Neurosciences, vol. 30, no. 1, pp. 1–8, 2007.
[21]  P. Boulenguez, S. Liabeuf, R. Bos et al., “Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury,” Nature Medicine, vol. 16, no. 3, pp. 302–307, 2010.
[22]  S. A. Hewitt, J. I. Wamsteeker, E. U. Kurz, and J. S. Bains, “Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis,” Nature Neuroscience, vol. 12, no. 4, pp. 438–443, 2009.
[23]  D. Arion and D. A. Lewis, “Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia,” Archives of General Psychiatry, vol. 68, no. 1, pp. 21–31, 2011.
[24]  T. M. Hyde, B. K. Lipska, T. Ali et al., “Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia,” Journal of Neuroscience, vol. 31, no. 30, pp. 11088–11095, 2011.
[25]  N. Doyon, F. Ferrini, M. Gagnon, and Y. de Koninck, “Treating pathological pain: is KCC2 the key to the gate?” Expert Review of Neurotherapeutics, vol. 13, no. 5, pp. 469–471, 2013.
[26]  G. Huberfeld, L. Wittner, S. Clemenceau et al., “Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy,” Journal of Neuroscience, vol. 27, no. 37, pp. 9866–9873, 2007.
[27]  J. A. M. Coull, S. Beggs, D. Boudreau et al., “BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain,” Nature, vol. 438, no. 7070, pp. 1017–1021, 2005.
[28]  F. Ferrini, T. Trang, T. A. Mattioli, et al., “Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl- homeostasis,” Nature Neuroscience, vol. 16, no. 2, pp. 183–192, 2013.
[29]  C. Rivera, H. Li, J. Thomas-Crusells et al., “BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion,” Journal of Cell Biology, vol. 159, no. 5, pp. 747–752, 2002.
[30]  C. Rivera, J. Voipio, J. Thomas-Crusells et al., “Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2,” Journal of Neuroscience, vol. 24, no. 19, pp. 4683–4691, 2004.
[31]  W. Zhang, L.-Y. Liu, and T.-L. Xu, “Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rats,” Neuroscience, vol. 152, no. 2, pp. 502–510, 2008.
[32]  T. Trang, S. Beggs, and M. W. Salter, “Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain,” Neuron Glia Biology, vol. 7, no. 1, pp. 99–108, 2011.
[33]  M. P. Mattson, “Glutamate and neurotrophic factors in neuronal plasticity and disease,” Annals of the New York Academy of Sciences, vol. 1144, pp. 97–112, 2008.
[34]  A. Merighi, C. Salio, A. Ghirri et al., “BDNF as a pain modulator,” Progress in Neurobiology, vol. 85, no. 3, pp. 297–317, 2008.
[35]  A. R. Santos, D. Comprido, and C. B. Duarte, “Regulation of local translation at the synapse by BDNF,” Progress in Neurobiology, vol. 92, no. 4, pp. 505–516, 2010.
[36]  A. Figurov, L. D. Pozzo-Miller, P. Olafsson, T. Wang, and B. Lu, “Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus,” Nature, vol. 381, no. 6584, pp. 706–709, 1996.
[37]  S. Marty, M. Da, and B. Berninger, “Neurotrophins and activity-dependent plasticity of cortical interneurons,” Trends in Neurosciences, vol. 20, no. 5, pp. 198–202, 1997.
[38]  A. L. Mahan and K. J. Ressler, “Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder,” Trends in Neurosciences, vol. 35, no. 1, pp. 24–35, 2012.
[39]  Y. Huang, J. J. Wang, and W. H. Yung, “Coupling between GABA-A receptor and chloride transporter underlies ionic plasticity in cerebellar purkinje neurons,” Cerebellum, vol. 12, no. 3, pp. 328–330, 2013.
[40]  K. Gottmann, T. Mittmann, and V. Lessmann, “BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses,” Experimental Brain Research, vol. 199, no. 3-4, pp. 203–234, 2009.
[41]  N. H. Woo and B. Lu, “BDNF in synaptic plasticity and memory,” in Intercellular Communication in the Nervous System, Malenka Rpp, pp. 590–598, Academic Press, London, UK, 2009.
[42]  M. Frerking, R. C. Malenka, and R. A. Nicoll, “Brain-derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus,” Journal of Neurophysiology, vol. 80, no. 6, pp. 3383–3386, 1998.
[43]  T. Tanaka, H. Saito, and N. Matsuki, “Inhibition of GABA(A) synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus,” Journal of Neuroscience, vol. 17, no. 9, pp. 2959–2966, 1997.
[44]  P. Baldelli, M. Novara, V. Carabelli, J. M. Hernández-Guijo, and E. Carbone, “BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling,” European Journal of Neuroscience, vol. 16, no. 12, pp. 2297–2310, 2002.
[45]  P. Baldelli, J.-M. Hernandez-Guijo, V. Carabelli, and E. Carbone, “Brain-derived neurotrophic factor enhances GABA release probability and nonuniform distribution of N- and P/Q-type channels on release sites of hippocampal inhibitory synapses,” Journal of Neuroscience, vol. 25, no. 13, pp. 3358–3368, 2005.
[46]  Y. Mizoguchi, H. Ishibashi, and J. Nabekura, “The action of BDNF on GABAA currents changes from potentiating to suppressing during maturation of rat hippocampal CA1 pyramidal neurons,” Journal of Physiology, vol. 548, part 3, pp. 703–709, 2003.
[47]  E. A. Ivakine, B. A. Acton, V. Mahadevan, et al., “Neto2 is a KCC2 interacting protein required for neuronal Cl-regulation in hippocampal neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 9, pp. 3561–3566, 2013.
[48]  H. Wake, M. Watanabe, A. J. Moorhouse et al., “Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation,” Journal of Neuroscience, vol. 27, no. 7, pp. 1642–1650, 2007.
[49]  P. Blaesse, I. Guillemin, J. Schindler et al., “Oligomerization of KCC2 correlates with development of inhibitory neurotransmission,” Journal of Neuroscience, vol. 26, no. 41, pp. 10407–10419, 2006.
[50]  M. Watanabe, H. Wake, A. J. Moorhouse, and J. Nabekura, “Clustering of neuronal K+-Cl- cotransporters in lipid rafts by tyrosine phosphorylation,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 27980–27988, 2009.
[51]  S. Zadran, H. Jourdi, K. Rostamiani, G. Qin, X. Bi, and M. Baudry, “Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation,” Journal of Neuroscience, vol. 30, no. 3, pp. 1086–1095, 2010.
[52]  H. Vargas-Perez, R. T.-A. Kee, C. H. Walton et al., “Ventral tegmental area BDNF induces an opiate-dependent-like reward state in na?ve rats,” Science, vol. 324, no. 5935, pp. 1732–1734, 2009.
[53]  M. Fukuchi, T. Nii, N. Ishimaru et al., “Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions,” Neuroscience Research, vol. 65, no. 1, pp. 35–43, 2009.
[54]  G. Molinaro, G. Battaglia, B. Riozzi et al., “Memantine treatment reduces the expression of the K+/Cl- cotransporter KCC2 in the hippocampus and cerebral cortex, and attenuates behavioural responses mediated by GABAA receptor activation in mice,” Brain Research, vol. 1265, pp. 75–79, 2009.
[55]  S. Pezet, M. Malcangio, and S. B. McMahon, “BDNF: a neuromodulator in nociceptive pathways?” Brain Research Reviews, vol. 40, no. 1–3, pp. 240–249, 2002.
[56]  V. Parpura and R. Zorec, “Gliotransmission: exocytotic release from astrocytes,” Brain Research Reviews, vol. 63, no. 1-2, pp. 83–92, 2010.
[57]  S. Elkabes, E. M. DiCicco-Bloom, and I. B. Black, “Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function,” Journal of Neuroscience, vol. 16, no. 8, pp. 2508–2521, 1996.
[58]  T. Miwa, S. Furukawa, K. Nakajima, et al., “Lipopolysaccharide enhances synthesis of brain-derived neurotrophic factor in cultured rat microglia,” Journal of Neuroscience Research, vol. 50, no. 6, pp. 1023–1029, 1997.
[59]  V. Soontornniyomkij, G. Wang, C. A. Pittman, C. A. Wiley, and C. L. Achim, “Expression of brain-derived neurotrophic factor protein in activated microglia of human immunodeficiency virus type 1 encephalitis,” Neuropathology and Applied Neurobiology, vol. 24, no. 6, pp. 453–460, 1998.
[60]  P. E. Batchelor, G. T. Liberatore, J. Y. F. Wong et al., “Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor,” Journal of Neuroscience, vol. 19, no. 5, pp. 1708–1716, 1999.
[61]  K. D. Dougherty, C. F. Dreyfus, and I. B. Black, “Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury,” Neurobiology of Disease, vol. 7, no. 6, pp. 574–585, 2000.
[62]  T.-H. Lee, H. Kato, S.-T. Chen, K. Kogure, and Y. Itoyama, “Expression disparity of brain-derived neurotrophic factor immunoreactivity and mRNA in ischemic hippocampal neurons,” NeuroReport, vol. 13, no. 17, pp. 2271–2275, 2002.
[63]  C. Stadelmann, M. Kerschensteiner, T. Misgeld, W. Brück, R. Hohlfeld, and H. Lassmann, “BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells?” Brain, vol. 125, part 1, pp. 75–85, 2002.
[64]  C. Knott, G. Stern, A. Kingsbury, A. A. Welcher, and G. P. Wilkin, “Elevated glial brain-derived neurotrophic factor in Parkinson's diseased nigra,” Parkinsonism and Related Disorders, vol. 8, no. 5, pp. 329–341, 2002.
[65]  L. Ulmann, J. P. Hatcher, J. P. Hughes et al., “Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain,” Journal of Neuroscience, vol. 28, no. 44, pp. 11263–11268, 2008.
[66]  S. Beggs, T. Trang, and M. W. Salter, “P2X4R+ microglia drive neuropathic pain,” Nature Neuroscience, vol. 15, no. 8, pp. 1068–1073, 2012.
[67]  T. Trang, S. Beggs, X. Wan, and M. W. Salter, “P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation,” Journal of Neuroscience, vol. 29, no. 11, pp. 3518–3528, 2009.
[68]  K. Inoue, “Microglial activation by purines and pyrimidines,” Glia, vol. 40, no. 2, pp. 156–163, 2002.
[69]  Y. Pankratov, U. Lalo, A. Verkhratsky, and R. A. North, “Vesicular release of ATP at central synapses,” Pflugers Archiv European Journal of Physiology, vol. 452, no. 5, pp. 589–597, 2006.
[70]  P. B. Guthrie, J. Knappenberger, M. Segal, M. V. L. Bennett, A. C. Charles, and S. B. Kater, “ATP released from astrocytes mediates glial calcium waves,” Journal of Neuroscience, vol. 19, no. 2, pp. 520–528, 1999.
[71]  S. E. Haynes, G. Hollopeter, G. Yang et al., “The P2Y12 receptor regulates microglial activation by extracellular nucleotides,” Nature Neuroscience, vol. 9, no. 12, pp. 1512–1519, 2006.
[72]  K. Ohsawa, Y. Irino, Y. Nakamura, C. Akazawa, K. Inoue, and S. Kohsaka, “Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis,” Glia, vol. 55, no. 6, pp. 604–616, 2007.
[73]  M. Monif, C. A. Reid, K. L. Powell, M. L. Smart, and D. A. Williams, “The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore,” Journal of Neuroscience, vol. 29, no. 12, pp. 3781–3791, 2009.
[74]  K. Biber, M. Tsuda, H. Tozaki-Saitoh et al., “Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development,” The EMBO Journal, vol. 30, no. 9, pp. 1864–1873, 2011.
[75]  E. Toyomitsu, M. Tsuda, T. Yamashita, H. Tozaki-Saitoh, Y. Tanaka, and K. Inoue, “CCL2 promotes P2X4 receptor trafficking to the cell surface of microglia,” Purinergic Signalling, vol. 8, no. 2, pp. 301–310, 2012.
[76]  C. Abbadie, J. A. Lindia, A. M. Cumiskey et al., “Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7947–7952, 2003.
[77]  J. Zhang, Q. S. Xiang, S. Echeverry, J. S. Mogil, Y. de Koninck, and S. Rivest, “Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain,” Journal of Neuroscience, vol. 27, no. 45, pp. 12396–12406, 2007.
[78]  M. Tsuda, T. Masuda, J. Kitano, H. Shimoyama, H. Tozaki-Saitoh, and K. Inoue, “IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 19, pp. 8032–8037, 2009.
[79]  H. Yuan, X. Zhu, S. Zhou et al., “Role of mast cell activation in inducing microglial cells to release neurotrophin,” Journal of Neuroscience Research, vol. 88, no. 6, pp. 1348–1354, 2010.
[80]  K. Nasu-Tada, S. Koizumi, M. Tsuda, E. Kunifusa, and K. Inoue, “Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia,” Glia, vol. 53, no. 7, pp. 769–775, 2006.
[81]  M. Tsuda, E. Toyomitsu, T. Komatsu et al., “Fibronectin/integrin system is involved in P2X4 receptor upregulation in the spinal cord and neuropathic pain after nerve injury,” Glia, vol. 56, no. 5, pp. 579–585, 2008.
[82]  T. Masuda, M. Tsuda, R. Yoshinaga, et al., “IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype,” Cell Reports, vol. 1, no. 4, pp. 334–340, 2012.
[83]  J. Miao, M. Ding, A. Zhang, et al., “Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway,” Neuroscience Research, vol. 74, no. 3-4, pp. 269–276, 2012.
[84]  N. Takayama and H. Ueda, “Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia,” Journal of Neuroscience, vol. 25, no. 2, pp. 430–435, 2005.
[85]  R. Bardoni, T. Takazawa, C. K. Tong, et al., “Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn,” Annals of the New York Academy of Sciences, vol. 1279, pp. 90–96, 2013.
[86]  L. A. Roberts, C. Beyer, and B. R. Komisaruk, “Nociceptive responses to altered GABAergic activity at the spinal cord,” Life Sciences, vol. 39, no. 18, pp. 1667–1674, 1986.
[87]  T. L. Yaksh, “Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists,” Pain, vol. 37, no. 1, pp. 111–123, 1989.
[88]  J. A. M. Coull, D. Boudreau, K. Bachand et al., “Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain,” Nature, vol. 424, no. 6951, pp. 938–942, 2003.
[89]  H. Aldskogius, “Regulation of microglia—potential new drug targets in the CNS,” Expert Opinion on Therapeutic Targets, vol. 5, no. 6, pp. 655–668, 2001.
[90]  J. L. Arruda, S. Sweitzer, M. D. Rutkowski, and J. A. Deleo, “Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain,” Brain Research, vol. 879, no. 1-2, pp. 216–225, 2000.
[91]  S.-X. Jin, Z.-Y. Zhuang, C. J. Woolf, and R.-R. Ji, “p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain,” Journal of Neuroscience, vol. 23, no. 10, pp. 4017–4022, 2003.
[92]  M. Tsuda, Y. Shigemoto-Mogami, S. Koizumi et al., “P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury,” Nature, vol. 424, no. 6950, pp. 778–783, 2003.
[93]  Y. Lu, J. Zheng, L. Xiong, M. Zimmermann, and J. Yang, “Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat,” Journal of Physiology, vol. 586, part 23, pp. 5701–5715, 2008.
[94]  C. G. Jolivalt, C. A. Lee, K. M. Ramos, and N. A. Calcutt, “Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters,” Pain, vol. 140, no. 1, pp. 48–57, 2008.
[95]  B. Wei, T. Kumada, T. Furukawa, et al., “Pre- and post-synaptic switches of GABA actions associated with Cl- homeostatic changes are induced in the spinal nucleus of the trigeminal nerve in a rat model of trigeminal neuropathic pain,” Neuroscience, vol. 228, pp. 334–348, 2013.
[96]  S. Malhotra, A. D. Pandyan, C. R. Day, P. W. Jones, and H. Hermens, “Spasticity, an impairment that is poorly defined and poorly measured,” Clinical Rehabilitation, vol. 23, no. 7, pp. 651–658, 2009.
[97]  B. C. Hains and S. G. Waxman, “Activated microglia contribute to the maintenance of chronic pain after spinal cord injury,” Journal of Neuroscience, vol. 26, no. 16, pp. 4308–4317, 2006.
[98]  W. H. Lu, C. Y. Wang, P. S. Chen, et al., “Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia,” Journal of Neuroscience Research, vol. 91, no. 5, pp. 694–705, 2013.
[99]  R. Miles, P. Blaesse, G. Huberfeld, et al., “Chloride homeostasis and GABA signaling in temporal lobe epilepsy,” in Jasper's Basic Mechanisms of the Epilepsies [Internet], J. L. Noebeles, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta, Eds., National Center for Biotechnology Information (US), Bethesda, Md, USA, 4th edition, 2012.
[100]  C. Bernard, “Alterations in synaptic function in epilepsy,” in Jasper's Basic Mechanisms of the Epilepsies [Internet], J. L. Noebeles, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta, Eds., National Center for Biotechnology Information (US), Bethesda, Md, USA, 4th edition, 2012.
[101]  A. Shulga, J. Thomas-Crusells, T. Sigl et al., “Posttraumatic GABAA-mediated [Ca2+]i increase is essential for the induction of brain-derived neurotrophic factor-dependent survival of mature central neurons,” Journal of Neuroscience, vol. 28, no. 27, pp. 6996–7005, 2008.
[102]  A. Vezzani, E. Aronica, A. Mazarati, and Q. J. Pittman, “Epilepsy and brain inflammation,” Experimental Neurology, vol. 244, pp. 11–21, 2013.
[103]  A. D. Bachstetter, R. K. Rowe, M. Kaneko, et al., “The p38alpha MAPK regulates microglial responsiveness to diffuse traumatic brain injury,” Journal of Neuroscience, vol. 33, no. 14, pp. 6143–6153, 2013.
[104]  Z. Zhang, M. Artelt, M. Burnet, K. Trautmann, and H. J. Schluesener, “Lesional accumulation of P2X4 receptor+ monocytes following experimental traumatic brain injury,” Experimental Neurology, vol. 197, no. 1, pp. 252–257, 2006.
[105]  J. M. Schwarz and S. D. Bilbo, “Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction,” Journal of Neuroscience, vol. 33, no. 3, pp. 961–971, 2013.
[106]  A. Ludwig, P. Uvarov, S. Soni, J. Thomas-Crusells, M. S. Airaksinen, and C. Rivera, “Early growth response 4 mediates BDNF induction of potassium chloride cotransporter 2 transcription,” Journal of Neuroscience, vol. 31, no. 2, pp. 644–649, 2011.
[107]  R. H. Lipsky and A. M. Marini, “Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity,” Annals of the New York Academy of Sciences, vol. 1122, pp. 130–143, 2007.
[108]  A. Aguzzi, B. A. Barres, and M. L. Bennett, “Microglia: scapegoat, saboteur, or something else?” Science, vol. 339, no. 6116, pp. 156–161, 2013.
[109]  A. F. Keller, S. Beggs, M. W. Salter, and Y. de Koninck, “Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain,” Molecular Pain, vol. 3, article 27, 2007.
[110]  R. A. Crozier, C. Bi, Y. R. Han, and M. R. Plummer, “BDNF modulation of NMDA receptors is activity dependent,” Journal of Neurophysiology, vol. 100, no. 6, pp. 3264–3274, 2008.
[111]  L.-N. Wang, J.-P. Yang, F.-H. Ji et al., “Brain-derived neurotrophic factor modulates N-methyl-D-aspartate receptor activation in a rat model of cancer-induced bone pain,” Journal of Neuroscience Research, vol. 90, no. 6, pp. 1249–1260, 2012.
[112]  H. H. C. Lee, T. Z. Deeb, J. A. Walker, P. A. Davies, and S. J. Moss, “NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents,” Nature Neuroscience, vol. 14, no. 6, pp. 736–743, 2011.
[113]  M. Puskarjov, F. Ahmad, K. Kaila, and P. Blaesse, “Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain,” Journal of Neuroscience, vol. 32, no. 33, pp. 11356–11364, 2012.
[114]  C. Bechade, Y. Cantaut-Belarif, and A. Bessis, “Microglial control of neuronal activity,” Frontiers in Cellular Neuroscience, vol. 7, article 32, 2013.
[115]  M. A. Galic, K. Riazi, and Q. J. Pittman, “Cytokines and brain excitability,” Frontiers in Neuroendocrinology, vol. 33, no. 1, pp. 116–125, 2012.
[116]  Y. Hayashi, H. Ishibashi, K. Hashimoto, and H. Nakanishi, “Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors,” Glia, vol. 53, no. 6, pp. 660–668, 2006.
[117]  J. Steiner, M. Walter, T. Gos et al., “Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission?” Journal of Neuroinflammation, vol. 8, article 94, 2011.
[118]  S. Piccinin, S. di Angelantonio, A. Piccioni et al., “CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes,” Journal of Neuroimmunology, vol. 224, no. 1-2, pp. 85–92, 2010.
[119]  O. Pascual, S. B. Achour, P. Rostaing, A. Triller, and A. Bessis, “Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 4, pp. E197–E205, 2012.
[120]  G. Mandolesi, G. Grasselli, A. Musella et al., “GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis,” Neurobiology of Disease, vol. 46, no. 2, pp. 414–424, 2012.
[121]  F. P. Bellinger, S. Madamba, and G. R. Siggins, “Interleukin 1β inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus,” Brain Research, vol. 628, no. 1-2, pp. 227–234, 1993.
[122]  I. V. Tabarean, H. Korn, and T. Bartfai, “Interleukin-1β induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons,” Neuroscience, vol. 141, no. 4, pp. 1685–1695, 2006.
[123]  Y. Kawasaki, L. Zhang, J.-K. Cheng, and R.-R. Ji, “Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α in regulating synaptic and neuronal activity in the superficial spinal cord,” Journal of Neuroscience, vol. 28, no. 20, pp. 5189–5194, 2008.
[124]  D. Stellwagen, E. C. Beattie, J. Y. Seo, and R. C. Malenka, “Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α,” Journal of Neuroscience, vol. 25, no. 12, pp. 3219–3228, 2005.
[125]  N. R. Bhat, P. Zhang, J. C. Lee, and E. L. Hogan, “Extracellular signal-regulated kinase and p38 subgroups of mitogen- activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures,” Journal of Neuroscience, vol. 18, no. 5, pp. 1633–1641, 1998.
[126]  E. Galea, D. L. Feinstein, and D. J. Reis, “Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 22, pp. 10945–10949, 1992.
[127]  T. Matsui, C. I. Svensson, Y. Hirata, K. Mizobata, X.-Y. Hua, and T. L. Yaksh, “Release of prostaglandin E2 and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase,” Anesthesia and Analgesia, vol. 111, no. 2, pp. 554–560, 2010.
[128]  O. Saito, C. I. Svensson, M. W. Buczynski et al., “Spinal glial TLR4-mediated nociception and production of prostaglandin E2 and TNF,” British Journal of Pharmacology, vol. 160, no. 7, pp. 1754–1764, 2010.
[129]  S. Ahmadi, S. Lippross, W. L. Neuhuber, and H. U. Zeilhofer, “PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons,” Nature Neuroscience, vol. 5, no. 1, pp. 34–40, 2002.
[130]  R. J. Harvey, U. B. Depner, H. W?ssle et al., “GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization,” Science, vol. 304, no. 5672, pp. 884–887, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133