全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ionotropic Glutamate Receptors and Voltage-Gated Ca2+ Channels in Long-Term Potentiation of Spinal Dorsal Horn Synapses and Pain Hypersensitivity

DOI: 10.1155/2013/654257

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors (AMPA and NMDA receptors) and of voltage-gated Ca2+ channels. Here, we review the roles and mechanisms of these channels in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for hippocampal synapses. 1. Introduction Long-term potentiation (LTP), an increase in the strength of synaptic transmission between neurons, has been proposed as a cellular model of learning and memory formation. Since LTP was first described for the dentate area of the hippocampal formation [1], data pertinent to mechanisms of LTP have been abundantly accumulated in diverse synapses of hippocampus and other brain areas. In contrast, investigation of LTP in the spinal dorsal horn (DH) [2] is more recent, beginning twenty years after the first description of LTP in the hippocampus, and spinal DH LTP has focused largely upon the synapses formed by primary sensory afferent fibers, because these synapses are the first checkpoint for pain signals entering the central nervous system (CNS). At these primary afferent synapses, LTP has been thought to be a cellular correlate of pain hypersensitivity and as such has been proposed as a potential target for therapeutic treatments of chronic pain. Neurons in the spinal DH, consisting of superficial (laminae I and II) and deep (laminae III–VI) DH, receive synaptic inputs from primary afferent fibers, their cell bodies located within dorsal root ganglion (DRG) as well as those from other DH neurons, or neurons in other higher brain areas. The spinal DH neurons are considered as secondary neurons because peripheral somatosensory signals conveyed by primary sensory DRG neurons first reach these neurons. Synapses formed in these DH neurons mostly use glutamate for excitatory transmission. Generally, ionotropic glutamate receptors selectively activated by the artificial agonist α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) support the largest component of glutamatergic excitatory synaptic transmission in the CNS, while the N-methyl-D-aspartate (NMDA) receptor subtype is most

References

[1]  T. V. P. Bliss and T. Lomo, “Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 331–356, 1973.
[2]  M. Randi?, M. C. Jiang, and R. Cerne, “Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord,” Journal of Neuroscience, vol. 13, no. 12, pp. 5228–5241, 1993.
[3]  B. Rexed, “The cytoarchitectonic organization of the spinal cord in the cat,” Journal of Comparative Neurology, vol. 96, no. 3, pp. 414–495, 1952.
[4]  C. Molander, Q. Xu, and G. Grant, “The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord,” Journal of Comparative Neurology, vol. 230, no. 1, pp. 133–141, 1984.
[5]  J. M. A. Laird and F. Cervero, “A comparative study of the changes in receptive-field properties of multireceptive and nocireceptive rat dorsal horn neurons following noxious mechanical stimulation,” Journal of Neurophysiology, vol. 62, no. 4, pp. 854–863, 1989.
[6]  J. R. McClung and A. J. Castro, “Rexed's laminar scheme as it applies to the rat cervical spinal cord,” Experimental Neurology, vol. 58, no. 1, pp. 145–148, 1978.
[7]  A. J. Todd, “Neuronal circuitry for pain processing in the dorsal horn,” Nature Reviews Neuroscience, vol. 11, no. 12, pp. 823–836, 2010.
[8]  A. R. Light and E. R. Perl, “Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers,” Journal of Comparative Neurology, vol. 186, no. 2, pp. 117–131, 1979.
[9]  A. R. Light and E. R. Perl, “Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers,” Journal of Comparative Neurology, vol. 186, no. 2, pp. 133–150, 1979.
[10]  C. LaMotte, “Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord,” Journal of Comparative Neurology, vol. 172, no. 3, pp. 529–561, 1977.
[11]  B. Lynn, “Effect of neonatal treatment with capsaicin on the numbers and properties of cutaneous afferent units from the hair skin of the rat,” Brain Research, vol. 322, no. 2, pp. 255–260, 1984.
[12]  B. Lynn and S. E. Carpenter, “Primary afferent units from the hairy skin of the rat hind limb,” Brain Research, vol. 238, no. 1, pp. 29–43, 1982.
[13]  H. J. Ralston and D. D. Ralston, “Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography,” Journal of Neurocytology, vol. 8, no. 2, pp. 151–166, 1979.
[14]  J. A. Beal and H. R. Bicknell, “Primary afferent distribution pattern in the marginal zone (lamina I) of adult monkey and cat lumbosacral spinal cord,” Journal of Comparative Neurology, vol. 202, no. 2, pp. 255–263, 1981.
[15]  J. I. Nagy and S. P. Hunt, “The termination of primary afferents within the rat dorsal horn: evidence for rearrangement following capsaicin treatment,” Journal of Comparative Neurology, vol. 218, no. 2, pp. 145–158, 1983.
[16]  S. Gobel, W. M. Falls, and E. Humphrey, “Morphology and synaptic connections of ultrafine primary axons in lamina I of the spinal dorsal horn: candidates for the terminal axonal arbors of primary neurons with unmyelinated (C) axons,” Journal of Neuroscience, vol. 1, no. 10, pp. 1163–1179, 1981.
[17]  S. N. Lawson, B. A. Crepps, and E. R. Perl, “Relationship of substance P to afferent characteristics of dorsal root ganglion neurones in guinea-pig,” Journal of Physiology, vol. 505, no. 1, pp. 177–191, 1997.
[18]  D. C. Molliver, D. E. Wright, M. L. Leitner et al., “IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life,” Neuron, vol. 19, no. 4, pp. 849–861, 1997.
[19]  G. J. Michael, S. Averill, A. Nitkunan et al., “Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord,” Journal of Neuroscience, vol. 17, no. 21, pp. 8476–8490, 1997.
[20]  J. D. Silverman and L. Kruger, “Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers,” Journal of Neurocytology, vol. 19, no. 5, pp. 789–801, 1990.
[21]  M. J. Zylka, F. L. Rice, and D. J. Anderson, “Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd,” Neuron, vol. 45, no. 1, pp. 17–25, 2005.
[22]  A. Guo, L. Vulchanova, J. Wang, X. Li, and R. Elde, “Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neliropeptides, the P2X3 purinoceptor and IB4 binding sites,” European Journal of Neuroscience, vol. 11, no. 3, pp. 946–958, 1999.
[23]  M. B. Gerke and M. B. Plenderleith, “Binding sites for the plant lectin Bandeiraea simplicifolia I-isolectin B4 are expressed by nociceptive primary sensory neurones,” Brain Research, vol. 911, no. 1, pp. 101–104, 2001.
[24]  D. J. Cavanaugh, H. Lee, L. Lo et al., “Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 22, pp. 9075–9080, 2009.
[25]  L. Li, M. Rutlin, V. E. Abraira et al., “The functional organization of cutaneous low-threshold mechanosensory neurons,” Cell, vol. 147, no. 7, pp. 1615–1627, 2011.
[26]  R. Melzack and P. D. Wall, “Pain mechanisms: a new theory,” Science, vol. 150, no. 3699, pp. 971–979, 1965.
[27]  H. U. Zeilhofer, H. Wildner, and G. E. Yévenes, “Fast synaptic inhibition in spinal sensory processing and pain control,” Physiological Reviews, vol. 92, no. 1, pp. 193–235, 2012.
[28]  L. Cui, Y. R. Kim, H. Y. Kim et al., “Modulation of synaptic transmission from primary afferents to spinal substantia gelatinosa neurons by group III mGluRs in GAD65-EGFP transgenic mice,” Journal of Neurophysiology, vol. 105, no. 3, pp. 1102–1111, 2011.
[29]  B. Heinke, R. Ruscheweyh, L. Forsthuber, G. Wunderbaldinger, and J. Sandkühler, “Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurones identified by expression of green fluorescent protein in mice,” Journal of Physiology, vol. 560, no. 1, pp. 249–266, 2004.
[30]  A. J. Todd and A. C. Sullivan, “Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat,” Journal of Comparative Neurology, vol. 296, no. 3, pp. 496–505, 1990.
[31]  T. J. Grudt and E. R. Perl, “Correlations between neuronal morphology and electro-physiological features in the rodent superficial dorsal horn,” Journal of Physiology, vol. 540, no. 1, pp. 189–207, 2002.
[32]  A. W. Hantman, A. N. van den Pol, and E. R. Perl, “Morphological and physiological features of a set of spinal substantia gelatinosa neurons defined by green fluorescent protein expression,” Journal of Neuroscience, vol. 24, no. 4, pp. 836–842, 2004.
[33]  Y. Lu and E. R. Perl, “A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input,” Journal of Neuroscience, vol. 23, no. 25, pp. 8752–8758, 2003.
[34]  Y. Lu and E. R. Perl, “Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II),” Journal of Neuroscience, vol. 25, no. 15, pp. 3900–3907, 2005.
[35]  J. Zheng, Y. Lu, and E. R. Perl, “Inhibitory neurones of the spinal substantia gelatinosa mediate interaction of signals from primary afferents,” Journal of Physiology, vol. 588, no. 12, pp. 2065–2075, 2010.
[36]  T. Yasaka, G. Kato, H. Furue et al., “Cell-type-specific excitatory and inhibitory circuits involving primary afferents in the substantia gelatinosa of the rat spinal dorsal horn in vitro,” Journal of Physiology, vol. 581, part 2, pp. 603–618, 2007.
[37]  A. J. Todd and J. McKenzie, “GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord,” Neuroscience, vol. 31, no. 3, pp. 799–806, 1989.
[38]  D. J. Maxwell, M. D. Belle, O. Cheunsuang, A. Stewart, and R. Morris, “Morphology of inhibitory and excitatory interneurons in superficial laminae of the rat dorsal horn,” Journal of Physiology, vol. 584, part 2, pp. 521–533, 2007.
[39]  E. Polgár, S. A. S. Shehab, C. Watt, and A. J. Todd, “GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin I receptor in laminae III and IV of the rat spinal cord,” Journal of Neuroscience, vol. 19, no. 7, pp. 2637–2646, 1999.
[40]  E. Polgár, T. C. P. Sardella, M. Watanabe, and A. J. Todd, “Quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn,” Journal of Comparative Neurology, vol. 519, no. 6, pp. 1007–1023, 2011.
[41]  Z. Puskár, E. Polgár, and A. J. Todd, “A population of large lamina I projection neurons with selective inhibitory input in rat spinal cord,” Neuroscience, vol. 102, no. 1, pp. 167–176, 2001.
[42]  S. F. Traynelis, L. P. Wollmuth, C. J. McBain et al., “Glutamate receptor ion channels: structure, regulation, and function,” Pharmacological Reviews, vol. 62, no. 3, pp. 405–496, 2010.
[43]  C. E. Jahr and T. M. Jessell, “Synaptic transmission between dorsal root ganglion and dorsal horn neurons in culture: antagonism of monosynaptic excitatory postsynaptic potentials and glutamate excitation by kynurenate,” Journal of Neuroscience, vol. 5, no. 8, pp. 2281–2289, 1985.
[44]  I. Kangrga and M. Randi?, “Outflow of endogenous aspartate and glutamate from the rat spinal dorsal horn in vitro by activation of low- and high-threshold primary afferent fibers. Modulation by μ-opioids,” Brain Research, vol. 553, no. 2, pp. 347–352, 1991.
[45]  G. Gerber and M. Randi?, “Excitatory amino acid-mediated components of synaptically evoked input from dorsal roots to deep dorsal horn neurons in the rat spinal cord slice,” Neuroscience Letters, vol. 106, no. 1-2, pp. 211–219, 1989.
[46]  M. Yoshimura and T. Jessell, “Amino acid-mediated EPSPs at primary afferent synapses with substantia gelatinosa neurones in the rat spinal cord,” Journal of Physiology, vol. 430, pp. 315–335, 1990.
[47]  P. Li, T. J. Wilding, S. J. Kim, A. A. Calejesan, J. E. Huettner, and M. Zhuo, “Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord,” Nature, vol. 397, no. 6715, pp. 161–164, 1999.
[48]  D. H. Youn, N. Voitenko, G. Gerber, Y. K. Park, J. Galik, and M. Randi?, “Altered long-term synaptic plasticity and kainate-induced Ca2+ transients in the substantia gelatinosa neurons in GLUK6-deficient mice,” Molecular Brain Research, vol. 142, no. 1, pp. 9–18, 2005.
[49]  P. Li and M. Zhou, “Silent glutamatergic synapses and nociception in mammalian spinal cord,” Nature, vol. 393, no. 6686, pp. 695–698, 1998.
[50]  H. Baba, T. P. Doubell, K. A. Moore, and C. J. Woolf, “Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord,” Journal of Neurophysiology, vol. 83, no. 2, pp. 955–962, 2000.
[51]  A. J. Todd, C. Watt, R. C. Spike, and W. Sieghart, “Colocalization of GABA, glycine, and their receptors at synapses in the rat spinal cord,” Journal of Neuroscience, vol. 16, no. 3, pp. 974–982, 1996.
[52]  N. Chéry and Y. de Koninck, “Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord,” Journal of Neuroscience, vol. 19, no. 17, pp. 7342–7355, 1999.
[53]  M. L. Baccei and M. Fitzgerald, “Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn,” Journal of Neuroscience, vol. 24, no. 20, pp. 4749–4757, 2004.
[54]  M. Yoshimura and S. Nishi, “Primary afferent-evoked glycine- and GABA-mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro,” Journal of Physiology, vol. 482, part 1, pp. 29–38, 1995.
[55]  J. Lisman, R. C. Malenka, R. A. Nicoll, and R. Malinow, “Learning mechanisms: the case for CaM-KII,” Science, vol. 276, no. 5321, pp. 2001–2002, 1997.
[56]  A. Barria, D. Muller, V. Derkach, L. C. Griffith, and T. R. Soderling, “Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation,” Science, vol. 276, no. 5321, pp. 2042–2045, 1997.
[57]  H. K. Lee, M. Barbarosie, K. Kameyama, M. F. Bear, and R. L. Huganir, “Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity,” Nature, vol. 405, no. 6789, pp. 955–959, 2000.
[58]  H. K. Lee, K. Takamiya, J. S. Han et al., “Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory,” Cell, vol. 112, no. 5, pp. 631–643, 2003.
[59]  J. Lisman, R. Yasuda, and S. Raghavachari, “Mechanisms of CaMKII action in long-term potentiation,” Nature Reviews Neuroscience, vol. 13, no. 3, pp. 169–182, 2012.
[60]  T. G. Banke, D. Bowie, H. K. Lee, R. L. Huganir, A. Schousboe, and S. F. Traynelis, “Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase,” Journal of Neuroscience, vol. 20, no. 1, pp. 89–102, 2000.
[61]  T. A. Benke, A. Lüthi, J. T. R. Isaac, and G. L. Collingridge, “Modulation of ampa receptor unitary conductance by synaptic activity,” Nature, vol. 393, no. 6687, pp. 793–797, 1998.
[62]  S. H. Shi, Y. Hayashi, R. S. Petralia et al., “Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation,” Science, vol. 284, no. 5412, pp. 1811–1816, 1999.
[63]  S. Q. J. Liu and S. G. Cull-Candy, “Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype,” Nature, vol. 405, no. 6785, pp. 454–458, 2000.
[64]  R. Malinow and R. C. Malenka, “AMPA receptor trafficking and synaptic plasticity,” Annual Review of Neuroscience, vol. 25, pp. 103–126, 2002.
[65]  P. E. Schulz, “Long-term potentiation involves increases in the probability of neurotransmitter release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 11, pp. 5888–5893, 1997.
[66]  D. M. Kullmann and R. A. Nicoll, “Long-term potentiation is associated with increases in quantal content and quantal amplitude,” Nature, vol. 357, no. 6375, pp. 240–244, 1992.
[67]  J. Lisman and S. Raghavachari, “A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses,” Science's STKE, vol. 2006, no. 356, p. re11, 2006.
[68]  T. V. Bliss and G. L. Collingridge, “Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide,” Molecular Brain, vol. 6, article 5, 2013.
[69]  T. V. P. Bliss and G. L. Collingridge, “A synaptic model of memory: long-term potentiation in the hippocampus,” Nature, vol. 361, no. 6407, pp. 31–39, 1993.
[70]  R. C. Malenka and R. A. Nicoll, “Long-term potentiation—a decade of progress?” Science, vol. 285, no. 5435, pp. 1870–1874, 1999.
[71]  M. A. Lynch, “Long-Term potentiation and memory,” Physiological Reviews, vol. 84, no. 1, pp. 87–136, 2004.
[72]  J. R. Whitlock, A. J. Heynen, M. G. Shuler, and M. F. Bear, “Learning induces long-term potentiation in the hippocampus,” Science, vol. 313, no. 5790, pp. 1093–1097, 2006.
[73]  X. G. Liu and J. Sandkühler, “Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage,” Neuroscience Letters, vol. 191, no. 1-2, pp. 43–46, 1995.
[74]  M. Randi?, “Plasticity of excitatory synaptic transmission in the spinal cord dorsal horn,” Progress in Brain Research, vol. 113, pp. 463–506, 1996.
[75]  X. G. Liu and J. Sandkühler, “Activation of spinal N-methyl-D-aspartate or neurokinin receptors induces long-term potentiation of spinal C-fibre-evoked potentials,” Neuroscience, vol. 86, no. 4, pp. 1209–1216, 1998.
[76]  X. G. Liu and J. Sandkühler, “Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors,” Journal of Neurophysiology, vol. 78, no. 4, pp. 1973–1982, 1997.
[77]  J. J. Azkue, X. G. Liu, M. Zimmermann, and J. Sandkühler, “Induction of long-term potentiation of C fibre-evoked spinal field potentials requires recruitment of group I, but not group II/III metabotropic glutamate receptors,” Pain, vol. 106, no. 3, pp. 373–379, 2003.
[78]  G. W. Terman, C. L. Eastman, and C. Chavkin, “Mu opiates inhibit long-term potentiation induction in the spinal cord slice,” Journal of Neurophysiology, vol. 85, no. 2, pp. 485–494, 2001.
[79]  S. M. Dudek and M. F. Bear, “Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4363–4367, 1992.
[80]  A. Kemp and D. Manahan-Vaughan, “Hippocampal long-term depression: master or minion in declarative memory processes?” Trends in Neurosciences, vol. 30, no. 3, pp. 111–118, 2007.
[81]  P. V. Massey and Z. I. Bashir, “Long-term depression: multiple forms and implications for brain function,” Trends in Neurosciences, vol. 30, no. 4, pp. 176–184, 2007.
[82]  M. Ito, “Cerebellar long-term depression: characterization, signal transduction, and functional roles,” Physiological Reviews, vol. 81, no. 3, pp. 1143–1195, 2001.
[83]  G. Cheng and M. Randi?, “Involvement of intracellular calcium and protein phosphatases in long-term depression of A-fiber-mediated primary afferent neurotransmission,” Developmental Brain Research, vol. 144, no. 1, pp. 73–82, 2003.
[84]  J. Sandkühler, J. G. Chen, G. Cheng, and M. Randi?, “Low-frequency stimulation of afferent aδ-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat,” Journal of Neuroscience, vol. 17, no. 16, pp. 6483–6491, 1997.
[85]  J. Sandkühler, “Models and mechanisms of hyperalgesia and allodynia,” Physiological Reviews, vol. 89, no. 2, pp. 707–758, 2009.
[86]  R. Ruscheweyh, O. Wilder-Smith, R. Drdla, X. G. Liu, and J. Sandkühler, “Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy,” Molecular Pain, vol. 7, article 20, 2011.
[87]  H. Ikeda, J. Stark, H. Fischer et al., “Synaptic amplifier of inflammatory pain in the spinal dorsal horn,” Science, vol. 312, no. 5780, pp. 1659–1662, 2006.
[88]  R. Drdla-Schutting, J. Benrath, G. Wunderbaldinger, and J. Sandkühler, “Erasure of a spinal memory trace of pain by a brief, high-dose opioid administration,” Science, vol. 335, no. 6065, pp. 235–238, 2012.
[89]  J. Sandkühler and X. Liu, “Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury,” European Journal of Neuroscience, vol. 10, no. 7, pp. 2476–2480, 1998.
[90]  S. Ohnami, M. Tanabe, S. Shinohara, K. Takasu, A. Kato, and H. Ono, “Role of voltage-dependent calcium channel subtypes in spinal long-term potentiation of C-fiber-evoked field potentials,” Pain, vol. 152, no. 3, pp. 623–631, 2011.
[91]  C. K. Park, N. Lü, Z. Z. Xu, T. Liu, C. N. Serhan, and R. R. Ji, “Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1,” Journal of Neuroscience, vol. 31, no. 42, pp. 15072–15085, 2011.
[92]  W. T. Liu, H. C. Li, X. S. Song, Z. J. Huang, and X. J. Song, “EphB receptor signaling in mouse spinal cord contributes to physical dependence on morphine,” FASEB Journal, vol. 23, no. 1, pp. 90–98, 2009.
[93]  C. Luo, V. Gangadharan, K. K. Bali et al., “Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity,” PLoS Biology, vol. 10, no. 3, Article ID e1001283, 2012.
[94]  L. Z. Cheng, N. Lü, Y. Q. Zhang, and Z. Q. Zhao, “Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice,” Molecular Pain, vol. 6, article 1, 2010.
[95]  X. C. Zhang, Y. Q. Zhang, and Z. Q. Zhao, “Involvement of nitric oxide in long-term potentiation of spinal nociceptive responses in rats,” NeuroReport, vol. 16, no. 11, pp. 1197–1201, 2005.
[96]  X. C. Zhang, Y. Q. Zhang, and Z. Q. Zhao, “Different roles of two nitric oxide activated pathways in spinal long-term potentiation of C-fiber-evoked field potentials,” Neuropharmacology, vol. 50, no. 6, pp. 748–754, 2006.
[97]  L. M. Pedersen, L. M. Jacobsen, S. Mollerup, and J. Gjerstad, “Spinal cord long-term potentiation (LTP) is associated with increased dorsal horn gene expression of IL-1β, GDNF and iNOS,” European Journal of Pain, vol. 14, no. 3, pp. 255–260, 2010.
[98]  D. H. Youn, G. Royle, M. Kolaj, B. Vissel, and M. Randi?, “Enhanced LTP of primary afferent neurotransmission in AMPA receptor GluR2-deficient mice,” Pain, vol. 136, no. 1-2, pp. 158–167, 2008.
[99]  H. Ikeda, B. Heinke, R. Ruscheweyh, and J. Sandkühler, “Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia,” Science, vol. 299, no. 5610, pp. 1237–1240, 2003.
[100]  H. Y. Zhou, S. R. Chen, H. Chen, and H. L. Pan, “Opioid-induced long-term potentiation in the spinal cord is a presynaptic event,” Journal of Neuroscience, vol. 30, no. 12, pp. 4460–4466, 2010.
[101]  G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,” Journal of Neuroscience, vol. 18, no. 24, pp. 10464–10472, 1998.
[102]  J. M. Montgomery, P. Pavlidis, and D. V. Madison, “Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation,” Neuron, vol. 29, no. 3, pp. 691–701, 2001.
[103]  S. J. Jung, S. J. Kim, Y. K. Park, S. B. Oh, K. Cho, and J. Kim, “Group I mGluR regulates the polarity of spike-timing dependent plasticity in substantia gelatinosa neurons,” Biochemical and Biophysical Research Communications, vol. 347, no. 2, pp. 509–516, 2006.
[104]  F. Wei, K. I. Vadakkan, H. Toyoda et al., “Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice,” Journal of Neuroscience, vol. 26, no. 3, pp. 851–861, 2006.
[105]  R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacological Reviews, vol. 51, no. 1, pp. 7–61, 1999.
[106]  M. Hollmann and S. Heinemann, “Cloned glutamate receptors,” Annual Review of Neuroscience, vol. 17, pp. 31–108, 1994.
[107]  A. L. Mammen, K. Kameyama, K. W. Roche, and R. L. Huganir, “Phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II,” The Journal of Biological Chemistry, vol. 272, no. 51, pp. 32528–32533, 1997.
[108]  K. W. Roche, R. J. O'Brien, A. L. Mammen, J. Bernhardt, and R. L. Huganir, “Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit,” Neuron, vol. 16, no. 6, pp. 1179–1188, 1996.
[109]  Y. Hayashi, S. H. Shi, J. A. Esteban, A. Piccini, J. C. Poncer, and R. Malinow, “Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction,” Science, vol. 287, no. 5461, pp. 2262–2267, 2000.
[110]  S. H. Shi, Y. Hayashi, J. A. Esteban, and R. Malinow, “Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons,” Cell, vol. 105, no. 3, pp. 331–343, 2001.
[111]  D. Zamanillo, R. Sprengel, O. Hvalby et al., “Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning,” Science, vol. 284, no. 5421, pp. 1805–1811, 1999.
[112]  K. Plant, K. A. Pelkey, Z. A. Bortolotto et al., “Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation,” Nature Neuroscience, vol. 9, no. 5, pp. 602–604, 2006.
[113]  Z. Jia, N. Agopyan, P. Miu et al., “Enhanced LTP in mice deficient in the AMPA receptor GluR2,” Neuron, vol. 17, no. 5, pp. 945–956, 1996.
[114]  Y. Meng, Y. Zhang, and Z. Jia, “Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3,” Neuron, vol. 39, no. 1, pp. 163–176, 2003.
[115]  S. Tomita, H. Adesnik, M. Sekiguchi et al., “Stargazin modulates AMPA receptor gating and trafficking by distinct domains,” Nature, vol. 435, no. 7045, pp. 1052–1058, 2005.
[116]  S. Tomita, V. Stein, T. J. Stocker, R. A. Nicoll, and D. S. Bredt, “Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs,” Neuron, vol. 45, no. 2, pp. 269–277, 2005.
[117]  S. Tomita, L. Chen, Y. Kawasaki et al., “Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins,” Journal of Cell Biology, vol. 161, no. 4, pp. 805–816, 2003.
[118]  A. D. Milstein and R. A. Nicoll, “TARP modulation of synaptic AMPA receptor trafficking and gating depends on multiple intracellular domains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11348–11351, 2009.
[119]  A. J. Granger, Y. Shi, W. Lu, M. Cerpas, and R. A. Nicoll, “LTP requires a reserve pool of glutamate receptors independent of subunit type,” Nature, vol. 493, no. 7433, pp. 495–500, 2013.
[120]  R. C. Spike, D. J. Maxwell, and A. J. Todd, “GluR1 and GluR2/3 subunits of the AMPA-type glutamate receptor are associated with particular types of neurone in laminae I–III of the spinal dorsal horn of the rat,” European Journal of Neuroscience, vol. 10, no. 1, pp. 324–333, 1998.
[121]  H. S. Engelman, T. B. Allen, and A. B. MacDermott, “The distribution of neurons expressing calcium-permeable AMPA receptors in the superficial laminae of the spinal cord dorsal horn,” Journal of Neuroscience, vol. 19, no. 6, pp. 2081–2089, 1999.
[122]  J. G. Gu, C. Albuquerque, C. J. Lee, and A. B. MacDermott, “Synaptic strengthening through activation of Ca2+-permeable AMPA receptors,” Nature, vol. 381, no. 6585, pp. 793–796, 1996.
[123]  A. Popratiloff, R. J. Weinberg, and A. Rustioni, “AMPA receptor subunits underlying terminals of fine-caliber primary afferent fibers,” Journal of Neuroscience, vol. 16, no. 10, pp. 3363–3372, 1996.
[124]  H. Furukawa, S. K. Singh, R. Mancusso, and E. Gouaux, “Subunit arrangement and function in NMDA receptors,” Nature, vol. 438, no. 7065, pp. 185–192, 2005.
[125]  H. Furukawa and E. Gouaux, “Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core,” The EMBO Journal, vol. 22, no. 12, pp. 2873–2885, 2003.
[126]  Y. Yao, C. B. Harrison, P. L. Freddolino, K. Schulten, and M. L. Mayer, “Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors,” The EMBO Journal, vol. 27, no. 15, pp. 2158–2170, 2008.
[127]  A. B. MacDermott, M. L. Mayer, G. L. Westbrook, S. J. Smith, and J. L. Barker, “NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones,” Nature, vol. 321, no. 6069, pp. 519–522, 1986.
[128]  M. L. Mayer, G. L. Westbrook, and P. B. Buthrie, “Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones,” Nature, vol. 309, no. 5965, pp. 261–263, 1984.
[129]  R. A. J. Lester, J. D. Clements, G. L. Westbrook, and C. E. Jahr, “Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents,” Nature, vol. 346, no. 6284, pp. 565–567, 1990.
[130]  S. Cull-Candy, S. Brickley, and M. Farrant, “NMDA receptor subunits: diversity, development and disease,” Current Opinion in Neurobiology, vol. 11, no. 3, pp. 327–335, 2001.
[131]  H. Monyer, N. Burnashev, D. J. Laurie, B. Sakmann, and P. H. Seeburg, “Developmental and regional expression in the rat brain and functional properties of four NMDA receptors,” Neuron, vol. 12, no. 3, pp. 529–540, 1994.
[132]  D. J. A. Wyllie, P. Béhé, and D. Colquhoun, “Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors,” Journal of Physiology, vol. 510, part 1, pp. 1–18, 1998.
[133]  S. Vicini, J. F. Wang, J. H. Li et al., “Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors,” Journal of Neurophysiology, vol. 79, no. 2, pp. 555–566, 1998.
[134]  S. Das, Y. F. Sasaki, T. Rothe et al., “Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A,” Nature, vol. 393, no. 6683, pp. 377–381, 1998.
[135]  I. Pérez-Ota?o, C. T. Schulteis, A. Contractor et al., “Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors,” Journal of Neuroscience, vol. 21, no. 4, pp. 1228–1237, 2001.
[136]  J. E. Chatterton, M. Awobuluyi, L. S. Premkumar et al., “Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits,” Nature, vol. 415, no. 6873, pp. 793–798, 2002.
[137]  J. F. MacDonald, M. F. Jackson, and M. A. Beazely, “Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors,” Critical Reviews in Neurobiology, vol. 18, no. 1-2, pp. 71–84, 2006.
[138]  G. K?hr, V. Jensen, H. J. Koester et al., “Intracellular domains of NMDA receptor subtypes are determinants for long-term potentiation induction,” Journal of Neuroscience, vol. 23, no. 34, pp. 10791–10799, 2003.
[139]  T. E. Bartlett, N. J. Bannister, V. J. Collett et al., “Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus,” Neuropharmacology, vol. 52, no. 1, pp. 60–70, 2007.
[140]  Y. P. Tang, E. Shimizu, G. R. Dube et al., “Genetic enhancement of learning and memory in mice,” Nature, vol. 401, no. 6748, pp. 63–69, 1999.
[141]  K. Erreger, S. M. Dravid, T. G. Banke, D. J. A. Wyllie, and S. F. Traynelis, “Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles,” Journal of Physiology, vol. 563, no. 2, pp. 345–358, 2005.
[142]  H. H. Cheung and J. W. Gurd, “Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases,” Journal of Neurochemistry, vol. 78, no. 3, pp. 524–534, 2001.
[143]  T. Nakazawa, S. Komai, T. Tezuka et al., “Characterization of Fyn-mediated tyrosine phosphorylation sites on GluRε2 (NR2B) subunit of the N-methyl-D-aspartate receptor,” The Journal of Biological Chemistry, vol. 276, no. 1, pp. 693–699, 2001.
[144]  D. Ng, G. M. Pitcher, R. K. Szilard et al., “Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning,” PLoS Biology, vol. 7, no. 2, article e41, 2009.
[145]  A. Barria and R. Malinow, “NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII,” Neuron, vol. 48, no. 2, pp. 289–301, 2005.
[146]  A. J. Scheetz, A. C. Nairn, and M. Constantine-Paton, “NMDA receptor-mediated control of protein synthesis at developing synapses,” Nature Neuroscience, vol. 3, no. 3, pp. 211–216, 2000.
[147]  R. Gong, S. P. Chang, N. R. Abbassi, and S. J. Tang, “Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons,” The Journal of Biological Chemistry, vol. 281, no. 27, pp. 18802–18815, 2006.
[148]  D. H. Tran, R. Gong, and S. J. Tang, “Differential roles of NR2A and NR2B subtypes in NMDA receptor-dependent protein synthesis in dendrites,” Neuropharmacology, vol. 53, no. 2, pp. 252–256, 2007.
[149]  K. D. Bradshaw, N. J. Emptage, and T. V. P. Bliss, “A role for dendritic protein synthesis in hippocampal late LTP,” European Journal of Neuroscience, vol. 18, no. 11, pp. 3150–3152, 2003.
[150]  T. R. T?lle, A. Berthele, W. Zieglg?nsberger, P. H. Seeburg, and W. Wisden, “The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray,” Journal of Neuroscience, vol. 13, no. 12, pp. 5009–5028, 1993.
[151]  J. M. Luque, Z. Bleuel, P. Malherbe, and J. G. Richards, “Alternatively spliced isoforms of the N-methyl-D-aspartate receptor subunit 1 are differentially distributed within the rat spinal cord,” Neuroscience, vol. 63, no. 3, pp. 629–635, 1994.
[152]  S. Boyce, A. Wyatt, J. K. Webb et al., “Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn,” Neuropharmacology, vol. 38, no. 5, pp. 611–623, 1999.
[153]  G. G. Nagy, M. Watanabe, M. Fukaya, and A. J. Todd, “Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-D-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique,” European Journal of Neuroscience, vol. 20, no. 12, pp. 3301–3312, 2004.
[154]  H. Shiokawa, E. J. Kaftan, A. B. MacDermott, and C. K. Tong, “NR2 subunits and NMDA receptors on lamina II inhibitory and excitatory interneurons of the mouse dorsal horn,” Molecular Pain, vol. 6, article 26, 2010.
[155]  A. Momiyama, “Distinct synaptic and extrasynaptic NMDA receptors identified in dorsal horn neurones of the adult rat spinal cord,” Journal of Physiology, vol. 523, part 3, pp. 621–628, 2000.
[156]  J. Sandkühler, “Understanding LTP in pain pathways,” Molecular Pain, vol. 3, article 9, 2007.
[157]  S. K. Georgiev, H. Furue, H. Baba, and T. Kohno, “Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons,” Molecular Pain, vol. 6, article 25, 2010.
[158]  J. Benrath, C. Kempf, M. Georgieff, and J. Sandkühler, “Xenon blocks the induction of synaptic long-term potentiation in pain pathways in the rat spinal cord in vivo,” Anesthesia and Analgesia, vol. 104, no. 1, pp. 106–111, 2007.
[159]  H. Y. Kim, K. Y. Lee, Y. Lu et al., “Mitochondrial Ca2+ uptake is essential for synaptic plasticity in pain,” Journal of Neuroscience, vol. 31, no. 36, pp. 12982–12991, 2011.
[160]  J. Lerma, A. V. Paternain, A. Rodríguez-Moreno, and J. C. López-Garciáa, “Molecular physiology of kainate receptors,” Physiological Reviews, vol. 81, no. 3, pp. 971–998, 2001.
[161]  B. Bettler, J. Egebjerg, G. Sharma et al., “Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit,” Neuron, vol. 8, no. 2, pp. 257–265, 1992.
[162]  P. Werner, M. Voigt, K. Keinanen, W. Wisden, and P. H. Seeburg, “Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells,” Nature, vol. 351, no. 6329, pp. 742–744, 1991.
[163]  A. Herb, N. Burnashev, P. Werner, B. Sakmann, W. Wisden, and P. H. Seeburg, “The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits,” Neuron, vol. 8, no. 4, pp. 775–785, 1992.
[164]  B. Sommer, N. Burnashev, T. A. Verdoorn, K. Keinanen, B. Sakmann, and P. H. Seeburg, “A glutamate receptor channel with high affinity for domoate and kainate,” The EMBO Journal, vol. 11, no. 4, pp. 1651–1656, 1992.
[165]  H. H. Schiffer, G. T. Swanson, and S. F. Heinemann, “Rat GluR7 and a carboxy-terminal splice variant, GluR7b, are functional kainate receptor subunits with a low sensitivity to glutamate,” Neuron, vol. 19, no. 5, pp. 1141–1146, 1997.
[166]  P. Gregor, B. F. O'Hara, X. Yang, and G. R. Uhl, “Expression and novel subunit isoforms of glutamate receptor genes GluR5 and GluR6,” NeuroReport, vol. 4, no. 12, pp. 1343–1346, 1993.
[167]  N. Burnashev, Z. Zhou, E. Neher, and B. Sakmann, “Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes,” Journal of Physiology, vol. 485, part 2, pp. 403–418, 1995.
[168]  J. Egebjerg and S. F. Heinemann, “Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 755–759, 1993.
[169]  N. Burnashev, A. Villarroel, and B. Sakmann, “Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues,” Journal of Physiology, vol. 496, part 1, pp. 165–173, 1996.
[170]  A. Sailer, G. T. Swanson, I. Pérez-Ota?o et al., “Generation and analysis of GluR5(Q636R) kainate receptor mutant mice,” Journal of Neuroscience, vol. 19, no. 20, pp. 8757–8764, 1999.
[171]  M. Kohler, N. Burnashev, B. Sakmann, and P. H. Seeburg, “Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing,” Neuron, vol. 10, no. 3, pp. 491–500, 1993.
[172]  J. Lerma, “Roles and rules of kainate receptors in synaptic transmission,” Nature Reviews Neuroscience, vol. 4, no. 6, pp. 481–495, 2003.
[173]  Z. A. Bortolotto, V. R. J. Clarke, C. M. Delany et al., “Kainate receptors are involved in synaptic plasticity,” Nature, vol. 402, no. 6759, pp. 297–301, 1999.
[174]  S. E. Lauri, Z. A. Bortolotto, R. Nistico et al., “A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus,” Neuron, vol. 39, no. 2, pp. 327–341, 2003.
[175]  M. G. Weisskopf and R. A. Nicoll, “Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses,” Nature, vol. 376, no. 6537, pp. 256–259, 1995.
[176]  M. F. Yeckel, A. Kapur, and D. Johnston, “Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism,” Nature Neuroscience, vol. 2, no. 7, pp. 625–633, 1999.
[177]  A. Contractor, G. Swanson, and S. F. Heinemann, “Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus,” Neuron, vol. 29, no. 1, pp. 209–216, 2001.
[178]  S. J. Hwang, S. Pagliardini, A. Rustioni, and J. G. Valtschanoff, “Presynaptic kainate receptors in primary afferents to the superficial laminae of the rat spinal cord,” Journal of Comparative Neurology, vol. 436, no. 3, pp. 275–289, 2001.
[179]  G. A. Kerchner, T. J. Wilding, J. E. Huettner, and M. Zhuo, “Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn,” Journal of Neuroscience, vol. 22, no. 18, pp. 8010–8017, 2002.
[180]  G. A. Kerchner, T. J. Wilding, P. Li, M. Zhuo, and J. E. Huettner, “Presynaptic kainate receptors regulate spinal sensory transmission,” Journal of Neuroscience, vol. 21, no. 1, pp. 59–66, 2001.
[181]  K. M. Partin, D. K. Patneau, C. A. Winters, M. L. Mayer, and A. Buonanno, “Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A,” Neuron, vol. 11, no. 6, pp. 1069–1082, 1993.
[182]  R. S. Petralia, Y. X. Wang, and R. J. Wenthold, “Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies,” Journal of Comparative Neurology, vol. 349, no. 1, pp. 85–110, 1994.
[183]  J. E. Huettner, “Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by Con A,” Neuron, vol. 5, no. 3, pp. 255–266, 1990.
[184]  D. H. Youn and M. Randi?, “Modulation of excitatory synaptic transmission in the spinal substantia gelatinosa of mice deficient in the kainate receptor GluR5 and/or GluR6 subunit,” Journal of Physiology, vol. 555, part 3, pp. 683–698, 2004.
[185]  W. A. Catterall, “Structure and regulation of voltage-gated Ca2+ channels,” Annual Review of Cell and Developmental Biology, vol. 16, pp. 521–555, 2000.
[186]  W. A. Catterall, E. Perez-Reyes, T. P. Snutch, and J. Striessnig, “International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels,” Pharmacological Reviews, vol. 57, no. 4, pp. 411–425, 2005.
[187]  Z. Buraei and J. Yang, “The β subunit of voltage-gated Ca2+ channels,” Physiological Reviews, vol. 90, no. 4, pp. 1461–1506, 2010.
[188]  T. P. Snutch, W. J. Tomlinson, J. P. Leonard, and M. M. Gilbert, “Distinct calcium channels are generated by alternative splicing and are differentially expressed in the mammalian CNS,” Neuron, vol. 7, no. 1, pp. 45–57, 1991.
[189]  R. E. Westenbroek, M. K. Ahlijanian, and W. A. Catterall, “Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons,” Nature, vol. 347, no. 6290, pp. 281–284, 1990.
[190]  S. J. R. Lee, Y. Escobedo-Lozoya, E. M. Szatmari, and R. Yasuda, “Activation of CaMKII in single dendritic spines during long-term potentiation,” Nature, vol. 458, no. 7236, pp. 299–304, 2009.
[191]  L. M. Grover and T. J. Teyler, “Two components of long-term potentiation induced by different patterns of afferent activation,” Nature, vol. 347, no. 6292, pp. 477–479, 1990.
[192]  I. Cavus and T. Teyler, “Two forms of long-term potentiation in area CA1 activate different signal transduction cascades,” Journal of Neurophysiology, vol. 76, no. 5, pp. 3038–3047, 1996.
[193]  S. L. Morgan and T. J. Teyler, “Electrical stimuli patterned after the theta-rhythm induce multiple forms of LTP,” Journal of Neurophysiology, vol. 86, no. 3, pp. 1289–1296, 2001.
[194]  L. Aniksztejn and Y. Ben-Ari, “Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus,” Nature, vol. 349, no. 6304, pp. 67–69, 1991.
[195]  Y. Y. Huang and R. C. Malenka, “Examination of TEA-induced synaptic enhancement in area CA1 of the hippocampus: the role of voltage-dependent Ca2+ channels in the induction of LTP,” Journal of Neuroscience, vol. 13, no. 2, pp. 568–576, 1993.
[196]  G. Kochlamazashvili, C. Henneberger, O. Bukalo et al., “The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca2+ channels,” Neuron, vol. 67, no. 1, pp. 116–128, 2010.
[197]  M. R. Evers, B. Salmen, O. Bukalo et al., “Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C,” Journal of Neuroscience, vol. 22, no. 16, pp. 7177–7194, 2002.
[198]  E. W. Harris and C. W. Cotman, “Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists,” Neuroscience Letters, vol. 70, no. 1, pp. 132–137, 1986.
[199]  M. G. Weisskopf, E. P. Bauer, and J. E. LeDoux, “L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala,” Journal of Neuroscience, vol. 19, no. 23, pp. 10512–10519, 1999.
[200]  A. Kapur, M. F. Yeckel, R. Gray, and D. Johnston, “L-type calcium channels are required for one form of hippocampal mossy fiber LTP,” Journal of Neurophysiology, vol. 79, no. 4, pp. 2181–2190, 1998.
[201]  P. E. Castillo, M. G. Weisskopf, and R. A. Nicoll, “The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation,” Neuron, vol. 12, no. 2, pp. 261–269, 1994.
[202]  S. Remy and N. Spruston, “Dendritic spikes induce single-burst long-term potentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17192–17197, 2007.
[203]  R. E. Westenbroek, L. Hoskins, and W. A. Catterall, “Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals,” Journal of Neuroscience, vol. 18, no. 16, pp. 6319–6330, 1998.
[204]  K. P. Carlin, K. E. Jones, Z. Jiang, L. M. Jordan, and R. M. Brownstone, “Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistability,” European Journal of Neuroscience, vol. 12, no. 5, pp. 1635–1646, 2000.
[205]  A. Naka, D. Gruber-Schoffnegger, and J. Sandkühler, “Non-Hebbian plasticity at C-fiber synapses in rat spinal cord lamina I neurons,” Pain, vol. 154, no. 8, pp. 1333–1342, 2013.
[206]  M. Tanabe, H. Murakami, M. Honda, and H. Ono, “Gabapentin depresses C-fiber-evoked field potentials in rat spinal dorsal horn only after induction of long-term potentiation,” Experimental Neurology, vol. 202, no. 2, pp. 280–286, 2006.
[207]  K. Hara, Y. Saito, Y. Kirihara, S. Sakura, and Y. Kosaka, “Antinociceptive effects of intrathecal L-type calcium channel blockers on visceral and somatic stimuli in the rat,” Anesthesia and Analgesia, vol. 87, no. 2, pp. 382–387, 1998.
[208]  V. Neugebauer, H. Vanegas, J. Nebe, P. Rümenapp, and H. G. Schaible, “Effects of N- and L-type calcium channel antagonists on the responses of nociceptive spinal cord neurons to mechanical stimulation of the normal and the inflamed knee joint,” Journal of Neurophysiology, vol. 76, no. 6, pp. 3740–3749, 1996.
[209]  A. B. Malmberg and T. L. Yaksh, “Voltage-sensitive calcium channels in spinal nociceptive processing: blockade of N- and P-type channels inhibits formalin-induced nociception,” Journal of Neuroscience, vol. 14, no. 8, pp. 4882–4890, 1994.
[210]  K. A. Sluka, “Blockade of calcium channels can prevent the onset of secondary hyperalgesia and allodynia induced by intradermal injection of capsaicin in rats,” Pain, vol. 71, no. 2, pp. 157–164, 1997.
[211]  K. A. Sluka, “Blockade of N- and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation,” Journal of Pharmacology and Experimental Therapeutics, vol. 287, no. 1, pp. 232–237, 1998.
[212]  S. R. Chaplan, J. W. Pogrel, and T. L. Yaksh, “Role of voltage-dependent calcium channel subtypes in experimental tactile allodynia,” Journal of Pharmacology and Experimental Therapeutics, vol. 269, no. 3, pp. 1117–1123, 1994.
[213]  P. Fossat, E. Dobremez, R. Bouali-Benazzouz et al., “Knockdown of L calcium channel subtypes: differential effects in neuropathic pain,” Journal of Neuroscience, vol. 30, no. 3, pp. 1073–1085, 2010.
[214]  A. Favereaux, O. Thoumine, R. Bouali-Benazzouz et al., “Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain,” The EMBO Journal, vol. 30, no. 18, pp. 3830–3841, 2011.
[215]  S. Hatakeyama, M. Wakamori, M. Ino et al., “Differential nociceptive responses in mice lacking the α1B subunit of N-type Ca2+ channels,” NeuroReport, vol. 12, no. 11, pp. 2423–2427, 2001.
[216]  D. S. Kim, C. H. Yoon, S. J. Lee, S. Y. Park, H. J. Yoo, and H. J. Cho, “Changes in voltage-gated calcium channel α1 gene expression in rat dorsal root ganglia following peripheral nerve injury,” Molecular Brain Research, vol. 96, no. 1-2, pp. 151–156, 2001.
[217]  M. Murakami, O. Nakagawasai, T. Suzuki et al., “Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel α1 subunits in the dorsal horn of spinal cord in mice,” Brain Research, vol. 1024, no. 1-2, pp. 122–129, 2004.
[218]  M. Umeda, T. Ohkubo, J. Ono, T. Fukuizumi, and K. Kitamura, “Molecular and immunohistochemical studies in expression of voltage-dependent Ca2+ channels in dorsal root ganglia from streptozotocin-induced diabetic mice,” Life Sciences, vol. 79, no. 21, pp. 1995–2000, 2006.
[219]  T. Takahashi and A. Momiyama, “Different types of calcium channels mediate central synaptic transmission,” Nature, vol. 366, no. 6451, pp. 156–158, 1993.
[220]  M. Ogasawara, T. Kurihara, Q. Hu, and T. Tanabe, “Characterization of acute somatosensory pain transmission in P/Q-type Ca2+ channel mutant mice, leaner,” FEBS Letters, vol. 508, no. 2, pp. 181–186, 2001.
[221]  K. A. Pelkey, L. Topolnik, J. C. Lacaille, and C. J. McBain, “Compartmentalized Ca2+ channel regulation at divergent mossy-fiber release sites underlies target cell-dependent plasticity,” Neuron, vol. 52, no. 3, pp. 497–510, 2006.
[222]  A. Sarihi, J. Mirnajafi-Zadeh, B. Jiang et al., “Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex,” Journal of Neuroscience, vol. 32, no. 38, pp. 13189–13199, 2012.
[223]  B. Heinke, E. Balzer, and J. Sandkühler, “Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons,” European Journal of Neuroscience, vol. 19, no. 1, pp. 103–111, 2004.
[224]  T. Yamamoto and Y. Sakashita, “Differential effects of intrathecally administered N- and P-type voltage-sensitive calcium channel blockers upon two models of experimental mononeuropathy in the rat,” Brain Research, vol. 794, no. 2, pp. 329–332, 1998.
[225]  S. Luvisetto, S. Marinelli, M. S. Panasiti et al., “Pain sensitivity in mice lacking the 2.1 α1 subunit of P/Q-type Ca2+ channels,” Neuroscience, vol. 142, no. 3, pp. 823–832, 2006.
[226]  N. Fukumoto, Y. Obama, N. Kitamura et al., “Hypoalgesic behaviors of P/Q-type voltage-gated Ca2+ channel mutant mouse, rolling mouse Nagoya,” Neuroscience, vol. 160, no. 1, pp. 165–173, 2009.
[227]  W. Gruner and L. R. Silva, “ω-conotoxin sensitivity and presynaptic inhibition of glutamatergic sensory neurotransmission in vitro,” Journal of Neuroscience, vol. 14, no. 5, part 1, pp. 2800–2808, 1994.
[228]  G. G. T. Holz, K. Dunlap, and R. M. Kream, “Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity,” Journal of Neuroscience, vol. 8, no. 2, pp. 463–471, 1988.
[229]  A. R. Evans, G. D. Nicol, and M. R. Vasko, “Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons,” Brain Research, vol. 712, no. 2, pp. 265–273, 1996.
[230]  D. Jeon, C. Kim, Y. M. Yang et al., “Impaired long-term memory and long-term potentiation in N-type Ca2+ channel-deficient mice,” Genes, Brain and Behavior, vol. 6, no. 4, pp. 375–388, 2007.
[231]  M. S. Ahmed and S. A. Siegelbaum, “Recruitment of N-type Ca2+ channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses,” Neuron, vol. 63, no. 3, pp. 372–385, 2009.
[232]  P. Santicioli, E. Del Bianco, M. Tramontana, P. Geppetti, and C. A. Maggi, “Release of calcitonin gene-related peptide like-immunoreactivity induced by electrical field stimulation from rat spinal afferents is mediated by conotoxin-sensitive calcium channels,” Neuroscience Letters, vol. 136, no. 2, pp. 161–164, 1992.
[233]  C. A. Maggi, M. Tramontana, R. Cecconi, and P. Santicioli, “Neurochemical evidence for the involvement of N-type calcium channels in transmitter secretion from peripheral endings of sensory nerves in guinea pigs,” Neuroscience Letters, vol. 114, no. 2, pp. 203–206, 1990.
[234]  H. Vanegas and H. G. Schaible, “Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia,” Pain, vol. 85, no. 1-2, pp. 9–18, 2000.
[235]  R. J. Winquist, J. Q. Pan, and V. K. Gribkoff, “Use-dependent blockade of 2.2 voltage-gated calcium channels for neuropathic pain,” Biochemical Pharmacology, vol. 70, no. 4, pp. 489–499, 2005.
[236]  H. Saegusa, T. Kurihara, S. Zong et al., “Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel,” The EMBO Journal, vol. 20, no. 10, pp. 2349–2356, 2001.
[237]  T. Fukuizumi, T. Ohkubo, and K. Kitamura, “Spinal sensitization mechanism in vincristine-induced hyperalgesia in mice,” Neuroscience Letters, vol. 343, no. 2, pp. 89–92, 2003.
[238]  E. A. Matthews and A. H. Dickenson, “Effects of spinally delivered N- and P-type voltage-dependent calcium channel antagonists on dorsal horn neuronal responses in a rat model of neuropathy,” Pain, vol. 92, no. 1-2, pp. 235–246, 2001.
[239]  D. Cizkova, J. Marsala, N. Lukacova et al., “Localization of N-type Ca2+ channels in the rat spinal cord following chronic constrictive nerve injury,” Experimental Brain Research, vol. 147, no. 4, pp. 456–463, 2002.
[240]  T. J. Bell, C. Thaler, A. J. Castiglioni, T. D. Helton, and D. Lipscombe, “Cell-specific alternative splicing increases calcium channel current density in the pain pathway,” Neuron, vol. 41, no. 1, pp. 127–138, 2004.
[241]  A. Andrade, S. Denome, Y. Q. Jiang, S. Marangoudakis, and D. Lipscombe, “Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing,” Nature Neuroscience, vol. 13, no. 10, pp. 1249–1256, 2010.
[242]  J. M. Brittain, D. B. Duarte, S. M. Wilson et al., “Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex,” Nature Medicine, vol. 17, no. 7, pp. 822–829, 2011.
[243]  C. C. Chen, J. W. Shen, N. C. Chung, M. Y. Min, S. J. Cheng, and I. Y. Liu, “Retrieval of context-associated memory is dependent on the 3.2 T-type calcium channel,” PLoS ONE, vol. 7, no. 1, Article ID e29384, 2012.
[244]  Y. Wang, M. J. Rowan, and R. Anwyl, “LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro,” Journal of Neurophysiology, vol. 78, no. 5, pp. 2574–2581, 1997.
[245]  Y. Isomura, Y. Fujiwara-Tsukamoto, M. Imanishi, A. Nambu, and M. Takada, “Distance-dependent Ni2+-sensitivity of synaptic plasticity in apical dendrites of hippocampal CA1 pyramidal cells,” Journal of Neurophysiology, vol. 87, no. 2, pp. 1169–1174, 2002.
[246]  D. Song, Z. Wang, and T. W. Berger, “Contribution of T-Type VDCC to TEA-induced long-term synaptic modification in hippocampal CA1 and dentate gyrus,” Hippocampus, vol. 12, no. 5, pp. 689–697, 2002.
[247]  E. Suzuki and T. Okada, “Stratum oriens stimulation-evoked modulation of hippocampal long-term potentiation involves the activation of muscarinic acetylcholine receptors and the inhibition of Kv7/M potassium ion channels,” European Journal of Neuroscience, vol. 36, no. 1, pp. 1984–1992, 2012.
[248]  E. M. Talley, L. L. Cribbs, J. H. Lee, A. Daud, E. Perez-Reyes, and D. A. Bayliss, “Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels,” Journal of Neuroscience, vol. 19, no. 6, pp. 1895–1911, 1999.
[249]  L. Y. M. Huang, “Calcium channels in isolated rat dorsal horn neurones, including labelled spinothalamic and trigeminothalamic cells,” Journal of Physiology, vol. 411, pp. 161–177, 1989.
[250]  P. D. Ryu and M. Randi?, “Low- and high-voltage-activated calcium currents in rat spinal dorsal horn neurons,” Journal of Neurophysiology, vol. 63, no. 2, pp. 273–285, 1990.
[251]  M. A. Walsh, B. A. Graham, A. M. Brichta, and R. J. Callister, “Evidence for a critical period in the development of excitability and potassium currents in mouse lumbar superficial dorsal horn neurons,” Journal of Neurophysiology, vol. 101, no. 4, pp. 1800–1812, 2009.
[252]  W. H. Ku and S. P. Schneider, “Multiple T-type Ca2+ current subtypes in electrophysiologically characterized hamster dorsal horn neurons: possible role in spinal sensory integration,” Journal of Neurophysiology, vol. 106, no. 5, pp. 2486–2498, 2011.
[253]  E. A. Matthews and A. H. Dickenson, “Effects of ethosuximide, a T-type Ca2+ channel blocker, on dorsal horn neuronal responses in rats,” European Journal of Pharmacology, vol. 415, no. 2-3, pp. 141–149, 2001.
[254]  R. Drdla and J. Sandkühler, “Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo,” Molecular Pain, vol. 4, article 18, 2008.
[255]  E. Bourinet, A. Alloui, A. Monteil et al., “Silencing of the 3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception,” The EMBO Journal, vol. 24, no. 2, pp. 315–324, 2005.
[256]  R. S. Scroggs and A. P. Fox, “Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size,” Journal of Physiology, vol. 445, pp. 639–658, 1992.
[257]  J.-B. Shin, C. Martinez-Salgado, P. A. Heppenstall, and G. R. Lewin, “A T-type calcium channel required for normal function of a mammalian mechanoreceptor,” Nature Neuroscience, vol. 6, no. 7, pp. 724–730, 2003.
[258]  S. Choi, H. S. Na, J. Kim et al., “Attenuated pain responses in mice lacking 3.2 T-type channels,” Genes, Brain and Behavior, vol. 6, no. 5, pp. 425–431, 2007.
[259]  D. Kim, D. Park, S. Choi et al., “Thalamic control of visceral nociception mediated by T-type Ca2+ channels,” Science, vol. 302, no. 5642, pp. 117–119, 2003.
[260]  A. Dogrul, L. R. Gardell, M. H. Ossipov, F. C. Tulunay, J. Lai, and F. Porreca, “Reversal of experimental neuropathic pain by T-type calcium channel blockers,” Pain, vol. 105, no. 1-2, pp. 159–168, 2003.
[261]  X. J. Wen, S. Y. Xu, Z.-X. Chen, C. X. Yang, H. Liang, and H. Li, “The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia,” Pharmacology, vol. 85, no. 5, pp. 295–300, 2010.
[262]  S. M. Todorovic, V. Jevtovic-Todorovic, A. Meyenburg et al., “Redox modulation of T-type calcium channels in rat peripheral nociceptors,” Neuron, vol. 31, no. 1, pp. 75–85, 2001.
[263]  S. M. Todorovic, A. Meyenburg, and V. Jevtovic-Todorovic, “Redox modulation of peripheral T-type Ca2+ channels in vivo: alteration of nerve injury-induced thermal hyperalgesia,” Pain, vol. 109, no. 3, pp. 328–339, 2004.
[264]  Y. Maeda, Y. Aoki, F. Sekiguchi et al., “Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of 3.2 T-type calcium channels,” Pain, vol. 142, no. 1-2, pp. 127–132, 2009.
[265]  T. Takahashi, Y. Aoki, K. Okubo et al., “Upregulation of 3.2 T-type calcium channels targeted by endogenous hydrogen sulfide contributes to maintenance of neuropathic pain,” Pain, vol. 150, no. 1, pp. 183–191, 2010.
[266]  M. H. Myoga and W. G. Regehr, “Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to purkinje cell synapses,” Journal of Neuroscience, vol. 31, no. 14, pp. 5235–5243, 2011.
[267]  R. Yasuda, B. L. Sabatini, and K. Svoboda, “Plasticity of calcium channels in dendritic spines,” Nature Neuroscience, vol. 6, no. 9, pp. 948–955, 2003.
[268]  H. Takahashi and J. C. Magee, “Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons,” Neuron, vol. 62, no. 1, pp. 102–111, 2009.
[269]  J. C. Magee and D. Johnston, “Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons,” Journal of Physiology, vol. 487, part 1, pp. 67–90, 1995.
[270]  Z. Fang, J. H. Hwang, J. S. Kim, S. J. Jung, and S. B. Oh, “R-type calcium channel isoform in rat dorsal root ganglion neurons,” Korean Journal of Physiology and Pharmacology, vol. 14, no. 1, pp. 45–49, 2010.
[271]  E. Bourinet, S. C. Stotz, R. L. Spaetgens et al., “Interaction of SNX482 with domains III and IV inhibits activation gating of α1E ( 2.3) calcium channels,” Biophysical Journal, vol. 81, no. 1, pp. 79–88, 2001.
[272]  E. A. Matthews, L. A. Bee, G. J. Stephens, and A. H. Dickenson, “The 2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain,” European Journal of Neuroscience, vol. 25, no. 12, pp. 3561–3569, 2007.
[273]  H. Saegusa, T. Kurihara, S. Zong et al., “Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2+ channel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 6132–6137, 2000.
[274]  R.-R. Ji, T. Kohno, K. A. Moore, and C. J. Woolf, “Central sensitization and LTP: do pain and memory share similar mechanisms?” Trends in Neurosciences, vol. 26, no. 12, pp. 696–705, 2003.
[275]  K. Deisseroth, “Optogenetics,” Nature Methods, vol. 8, no. 1, pp. 26–29, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133