全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Mechanisms of Treadmill Therapy on Neuromuscular Atrophy Induced via Botulinum Toxin A

DOI: 10.1155/2013/593271

Full-Text   Cite this paper   Add to My Lib

Abstract:

Botulinum toxin A (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-A blocks the release of acetylcholine, thereby decreasing the ability of a spastic muscle to generate forceful contraction, which results in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius, and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits α and β was found following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-A injection. 1. Introduction Treadmill exercise, both full weight-bearing and partial weight-bearing, is a dynamic training approach that provides intervention for walking and gait analysis. In patients with neuromuscular disorders, such as stroke, spinal cord injury (SCI), or cerebral palsy (CP), treadmill exercise is a frequently used rehabilitation training model that has been shown to yield functional improvements [1–4]. Clinical investigations showed that in patients with CP, treadmill training can improve walking endurance, walking speed, and standing performance [5, 6]. In stroke rehabilitation, partial-support treadmill training is also a widely used training mode for gait correction [7, 8]. Spasticity is a sign of upper motor neuron lesion with increased stretch reflex depending on movement velocity, which can be caused by stroke, spinal cord injury, brain injury, cerebral palsy, or other neurological conditions [9]. One of the treatment choices for spasticity is the intramuscular injection of botulinum toxin A (BoNT-A) [10, 11]. Although several studies support the beneficial effects of treadmill training, most excluded BoNT-A-treated patients or did not mention these patients [12–14].

References

[1]  M. Liu, J. E. Stevens-Lapsley, A. Jayaraman et al., “Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats,” European Journal of Applied Physiology, vol. 109, no. 4, pp. 709–720, 2010.
[2]  J. M. Lam, C. Globas, J. Cerny et al., “Predictors of response to treadmill exercise in stroke survivors,” Neurorehabilitation and Neural Repair, vol. 24, no. 6, pp. 567–574, 2010.
[3]  B. H. Dobkin, D. Apple, H. Barbeau et al., “Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 17, no. 3, pp. 153–167, 2003.
[4]  M. Wessels, C. Lucas, I. Eriks, and S. De Groot, “Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury a systematic review,” Journal of Rehabilitation Medicine, vol. 42, no. 6, pp. 513–519, 2010.
[5]  K. L. Willoughby, K. J. Dodd, and N. Shields, “A systematic review of the effectiveness of treadmill training for children with cerebral palsy,” Disability and Rehabilitation, vol. 31, no. 24, pp. 1971–1979, 2009.
[6]  A. Mutlu, K. Krosschell, and D. G. Spira, “Treadmill training with partial body-weight support in children with cerebral palsy: a systematic review,” Developmental Medicine and Child Neurology, vol. 51, no. 4, pp. 268–275, 2009.
[7]  K. H. C. Silver, R. F. Macko, L. W. Forrester, A. P. Goldberg, and G. V. Smith, “Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: a preliminary report,” Neurorehabilitation and Neural Repair, vol. 14, no. 1, pp. 65–71, 2000.
[8]  F. M. Ivey, C. E. Hafer-Macko, and R. F. Macko, “Task-oriented treadmill exercise training in chronic hemiparetic stroke,” Journal of Rehabilitation Research and Development, vol. 45, no. 2, pp. 249–260, 2008.
[9]  J. W. Lance, “The control of muscle tone, reflexes, and movement: Robert Wartenberg lecture,” Neurology, vol. 30, no. 12, pp. 1303–1313, 1980.
[10]  B. R. Singh, “Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting,” Neurotoxicity Research, vol. 9, no. 2-3, pp. 73–92, 2006.
[11]  R. G. Wenzel, “Pharmacology of botulinum neurotoxin serotype A,” American Journal of Health-System Pharmacy, vol. 61, no. 6, pp. S5–S10, 2004.
[12]  K. Mattern-Baxter, S. Bellamy, and J. K. Mansoor, “Effects of intensive locomotor treadmill training on young children with cerebral palsy,” Pediatric Physical Therapy, vol. 21, no. 4, pp. 308–318, 2009.
[13]  R.-J. Cherng, C.-F. Liu, T.-W. Lau, and R.-B. Hong, “Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy,” American Journal of Physical Medicine and Rehabilitation, vol. 86, no. 7, pp. 548–555, 2007.
[14]  S. Marcuzzo, M. Ferreira Dutra, F. Stigger et al., “Beneficial effects of treadmill training in a cerebral palsy-like rodent model: walking pattern and soleus quantitative histology,” Brain Research, vol. 1222, pp. 129–140, 2008.
[15]  I. Borggraefe, A. Meyer-Heim, A. Kumar, J. S. Schaefer, S. Berweck, and F. Heinen, “Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy,” Movement Disorders, vol. 23, no. 2, pp. 280–283, 2008.
[16]  D. L. Damiano and S. L. Dejong, “A systematic review of the effectiveness of treadmill training and body weight support in pediatric rehabilitation,” Journal of Neurologic Physical Therapy, vol. 33, no. 1, pp. 27–44, 2009.
[17]  N. Chrysagis, E. K. Skordilis, N. Stavrou, et al., “The effect of treadmill training on gross motor function and walking speed in ambulatory adolescents with cerebral palsy: a randomized controlled trial,” American Journal of Physical Medicine & Rehabilitation, vol. 91, pp. 747–760, 2012.
[18]  I. Borggraefe, J. S. Schaefer, M. Klaiber et al., “Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy,” European Journal of Paediatric Neurology, vol. 14, no. 6, pp. 496–502, 2010.
[19]  M. Hodapp, J. Vry, V. Mall, and M. Faist, “Changes in soleus H-reflex modulation after treadmill training in children with cerebral palsy,” Brain, vol. 132, no. 1, pp. 37–44, 2009.
[20]  S. Grillner, “Neurobiological bases of rhythmic motor acts in vertebrates,” Science, vol. 228, no. 4696, pp. 143–149, 1985.
[21]  H. Barbeau and S. Rossignol, “Recovery of locomotion after chronic spinalization in the adult cat,” Brain Research, vol. 412, no. 1, pp. 84–95, 1987.
[22]  B. Bussel, A. Roby-Brami, A. Yakovleff, and N. Bennis, “Late flexion reflex in parapletic patients. Evidence for a spinal stepping generator,” Brain Research Bulletin, vol. 22, no. 4, pp. 53–56, 1989.
[23]  E. C. Field-Fote and K. E. Roach, “Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial,” Physical Therapy, vol. 91, no. 1, pp. 48–60, 2011.
[24]  S. Nadeau, G. Jacquemin, C. Fournier, Y. Lamarre, and S. Rossignol, “Spontaneous motor rhythms of the back and legs in a patient with a complete spinal cord transection,” Neurorehabilitation and Neural Repair, vol. 24, no. 4, pp. 377–383, 2010.
[25]  B. H. Dobkin, S. Harkema, P. Requejo, and V. R. Edgerton, “Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury,” Journal of Neurologic Rehabilitation, vol. 9, no. 4, pp. 183–190, 1995.
[26]  S. J. Harkema, S. L. Hurley, U. K. Patel, P. S. Requejo, B. H. Dobkin, and V. R. Edgerton, “Human lumbosacral spinal cord interprets loading during stepping,” Journal of Neurophysiology, vol. 77, no. 2, pp. 797–811, 1997.
[27]  B. H. Dobkin and P. W. Duncan, “Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate?” Neurorehabil Neural Repair, vol. 26, pp. 308–317, 2012.
[28]  V. R. Edgerton, G. Courtine, Y. P. Gerasimenko et al., “Training locomotor networks,” Brain Research Reviews, vol. 57, no. 1, pp. 241–254, 2008.
[29]  Z. Ying, R. R. Roy, H. Zhong, S. Zdunowski, V. R. Edgerton, and F. Gomez-Pinilla, “BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats,” Neuroscience, vol. 155, no. 4, pp. 1070–1078, 2008.
[30]  Z. Ying, R. R. Roy, V. R. Edgerton, and F. Gómez-Pinilla, “Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury,” Experimental Neurology, vol. 193, no. 2, pp. 411–419, 2005.
[31]  M.-P. C?té, G. A. Azzam, M. A. Lemay, V. Zhukareva, and J. D. Houlé, “Activity-dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury,” Journal of Neurotrauma, vol. 28, no. 2, pp. 299–309, 2011.
[32]  V. S. Boyce, M. Tumolo, I. Fischer, M. Murray, and M. A. Lemay, “Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats,” Journal of Neurophysiology, vol. 98, no. 4, pp. 1988–1996, 2007.
[33]  V. R. Edgerton, N. J. K. Tillakaratne, A. J. Bigbee, R. D. De Leon, and R. R. Roy, “Plasticity of the spinal neural circuitry after injury,” Annual Review of Neuroscience, vol. 27, pp. 145–167, 2004.
[34]  V. R. Edgerton and R. R. Roy, “Activity-dependent plasticity of spinal locomotion: implications for sensory processing,” Exercise and Sport Sciences Reviews, vol. 37, no. 4, pp. 171–178, 2009.
[35]  J. Kuerzi, E. H. Brown, A. Shum-Siu et al., “Task-specificity versus ceiling effect: step-training in shallow water after spinal cord injury,” Experimental Neurology, vol. 224, no. 1, pp. 178–187, 2010.
[36]  J. A. Hodgson, R. R. Roy, R. De Leon, B. Dobkin, and V. R. Edgerton, “Can the mammalian lumbar spinal cord learn a motor task?” Medicine and Science in Sports and Exercise, vol. 26, no. 12, pp. 1491–1497, 1994.
[37]  D. Michele Basso and C. N. Hansen, “Biological basis of exercise-based treatments: spinal cord injury,” Journal of Injury, Function, and Rehabilitation, vol. 3, no. 6, pp. S73–S77, 2011.
[38]  T. M. Brushart and M. Marsel Mesulam, “Alteration in connections between muscle and anterior horn motoneurons after peripheral nerve repair,” Science, vol. 208, no. 4444, pp. 603–605, 1980.
[39]  H. Su, Q. Yuan, D. Qin, et al., “Ventral root re-implantation is better than peripheral nerve transplantation for motoneuron survival and regeneration after spinal root avulsion injury,” BMC Surgery, vol. 13, article 21, 2013.
[40]  T. Gordon, O. Sulaiman, and J. G. Boyd, “Experimental strategies to promote functional recovery after peripheral nerve injuries,” Journal of the Peripheral Nervous System, vol. 8, no. 4, pp. 236–250, 2003.
[41]  M. J. Sabatier, N. Redmon, G. Schwartz, and A. W. English, “Treadmill training promotes axon regeneration in injured peripheral nerves,” Experimental Neurology, vol. 211, no. 2, pp. 489–493, 2008.
[42]  T. Boeltz, M. Ireland, K. Mathis, et al., “Effects of treadmill training on functional recovery following peripheral nerve injury in rats,” Journal of Neurophysiology, vol. 109, pp. 2645–2657, 2013.
[43]  J. Ilha, R. T. Araujo, T. Malysz et al., “Endurance and resistance exercise training programs elicit specific effects on sciatic nerve regeneration after experimental traumatic lesion in rats,” Neurorehabilitation and Neural Repair, vol. 22, no. 4, pp. 355–366, 2008.
[44]  S. Vaynman and F. Gomez-Pinilla, “License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins,” Neurorehabilitation and Neural Repair, vol. 19, no. 4, pp. 283–295, 2005.
[45]  F. Gómez-Pinilla, Z. Ying, P. Opazo, R. R. Roy, and V. R. Edgerton, “Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle,” European Journal of Neuroscience, vol. 13, no. 6, pp. 1078–1084, 2001.
[46]  S. A. Neeper, F. Gómez-Pinilla, J. Choi, and C. W. Cotman, “Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain,” Brain Research, vol. 726, no. 1-2, pp. 49–56, 1996.
[47]  J. C. Wilhelm, M. Xu, D. Cucoranu et al., “Cooperative roles of BDNF expression in neurons and schwann cells are modulated by exercise to facilitate nerve regeneration,” Journal of Neuroscience, vol. 32, no. 14, pp. 5002–5009, 2012.
[48]  L. S. Chow, L. J. Greenlund, Y. W. Asmann et al., “Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function,” Journal of Applied Physiology, vol. 102, no. 3, pp. 1078–1089, 2007.
[49]  A. Safdar, J. M. Bourgeois, D. I. Ogborn et al., “Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, pp. 4135–4140, 2011.
[50]  A. Jakubiec-Puka, U. S?awińska, M. J. R?dowicz et al., “Influence of locomotor training on the structure and myosin heavy chains of the denervated rat soleus muscle,” Neurological Research, vol. 30, no. 2, pp. 170–178, 2008.
[51]  C.-H. Chae, S.-L. Jung, S.-H. An, C.-K. Jung, S.-N. Nam, and H.-T. Kim, “Treadmill exercise suppresses muscle cell apoptosis by increasing nerve growth factor levels and stimulating p-phosphatidylinositol 3-kinase activation in the soleus of diabetic rats,” Journal of Physiology and Biochemistry, vol. 67, no. 2, pp. 235–241, 2011.
[52]  G. E. Voerman, M. Gregori?, and H. J. Hermens, “Neurophysiological methods for the assessment of spasticity: the Hoffman reflex, the tendon reflex, and the stretch reflex,” Disability and Rehabilitation, vol. 27, no. 1-2, pp. 33–68, 2005.
[53]  N. Ghotbi, N. N. Ansari, S. Naghdi, and S. Hasson, “Measurement of lower-limb muscle spasticity: intrarater reliability of Modified Modified Ashworth Scale,” Journal of Rehabilitation Research and Development, vol. 48, no. 1, pp. 83–88, 2011.
[54]  A. Mutlu, A. Livanelioglu, and M. K. Gunel, “Reliability of Ashworth and Modified Ashworth Scales in children with spastic cerebral palsy,” BMC Musculoskeletal Disorders, vol. 9, article 44, 2008.
[55]  S. C. Allison, L. D. Abraham, and C. L. Petersen, “Reliability of the Modified Ashworth Scale in the assessment of plantarflexor muscle spasticity in patients with traumatic brain injury,” International Journal of Rehabilitation Research, vol. 19, no. 1, pp. 67–78, 1996.
[56]  R. W. Bohannon and M. B. Smith, “Interrater reliability of a modified Ashworth scale of muscle spasticity,” Physical Therapy, vol. 67, no. 2, pp. 206–207, 1987.
[57]  N. N. Ansari, S. Naghdi, P. Younesian, and M. Shayeghan, “Inter- and intrarater reliability of the Modified Modified Ashworth Scale in patients with knee extensor poststroke spasticity,” Physiotherapy Theory and Practice, vol. 24, no. 3, pp. 205–213, 2008.
[58]  A. D. Pandyan, G. R. Johnson, C. I. M. Price, R. H. Curless, M. P. Barnes, and H. Rodgers, “A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity,” Clinical Rehabilitation, vol. 13, no. 5, pp. 373–383, 1999.
[59]  T. Platz, C. Eickhof, G. Nuyens, and P. Vuadens, “Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature,” Disability and Rehabilitation, vol. 27, no. 1-2, pp. 7–18, 2005.
[60]  N. N. Ansari, S. Naghdi, T. K. Arab, and S. Jalaie, “The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect,” NeuroRehabilitation, vol. 23, no. 3, pp. 231–237, 2008.
[61]  C. Bargmann, “Neuroscience: genomics reaches the synapse,” Nature, vol. 436, no. 7050, pp. 473–474, 2005.
[62]  B. W. Hughes, L. L. Kusner, and H. J. Kaminski, “Molecular architecture of the neuromuscular junction,” Muscle and Nerve, vol. 33, no. 4, pp. 445–461, 2006.
[63]  M. Gautam, P. G. Noakes, L. Moscoso et al., “Defective neuromuscular synaptogenesis in agrin-deficient mutant mice,” Cell, vol. 85, no. 4, pp. 525–535, 1996.
[64]  M. A. Raftery, M. W. Hunkapiller, C. D. Strader, and L. E. Hood, “Acetylcholine receptor: complex of homologous subunits,” Science, vol. 208, no. 4451, pp. 1454–1457, 1980.
[65]  L. A. Sabourin and M. A. Rudnicki, “The molecular regulation of myogenesis,” Clinical Genetics, vol. 57, no. 1, pp. 16–25, 2000.
[66]  F. Charbonnier, B. Della Gaspera, A.-S. Armand et al., “Specific activation of the acetylcholine receptor subunit genes by MyoD family proteins,” Journal of Biological Chemistry, vol. 278, no. 35, pp. 33169–33174, 2003.
[67]  J. Piette, J.-L. Bessereau, M. Huchet, and J.-P. Changeux, “Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor α-subunit gene,” Nature, vol. 345, no. 6273, pp. 353–355, 1990.
[68]  S. Liu, D. S. Spinner, M. M. Schmidt, J. A. Danielsson, S. Wang, and J. Schmidt, “Interaction of MyoD family proteins with enhancers of acetylcholine receptor subunit genes in vivo,” Journal of Biological Chemistry, vol. 275, no. 52, pp. 41364–41368, 2000.
[69]  D. Ungar and F. M. Hughson, “SNARE protein structure and function,” Annual Review of Cell and Developmental Biology, vol. 19, pp. 493–517, 2003.
[70]  M. K. Bennett, “SNAREs and the specificity of transport vesicle targeting,” Current Opinion in Cell Biology, vol. 7, no. 4, pp. 581–586, 1995.
[71]  D. Burdick, A. H. Le Gall, and E. Rodriguez-Boulan, “Vesicular transport: implications for cell polarity,” Biocell, vol. 20, no. 3, pp. 343–353, 1996.
[72]  T. Sollner, S. W. Whiteheart, M. Brunner et al., “SNAP receptors implicated in vesicle targeting and fusion,” Nature, vol. 362, no. 6418, pp. 318–324, 1993.
[73]  W. Hong, “SNAREs and traffic,” Biochimica et Biophysica Acta, vol. 1744, no. 3, pp. 493–517, 2005.
[74]  F. J. Erbguth, “Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin,” Movement Disorders, vol. 19, no. 8, pp. S2–S6, 2004.
[75]  A. B. Scott, “Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery,” Ophthalmology, vol. 87, no. 10, pp. 1044–1049, 1980.
[76]  F. A. Meunier, G. Lisk, D. Sesardic, and J. O. Dolly, “Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation,” Molecular and Cellular Neuroscience, vol. 22, no. 4, pp. 454–466, 2003.
[77]  B. R. Dasgupta and H. Sugiyama, “Molecular forms of neurotoxins in proteolytic Clostridium botulinum type B cultures,” Infection and Immunity, vol. 14, no. 3, pp. 680–686, 1976.
[78]  F. Chen, G. M. Kuziemko, and R. C. Stevens, “Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900-kilodalton botulinum toxin complex species,” Infection and Immunity, vol. 66, no. 6, pp. 2420–2425, 1998.
[79]  R. Eleopra, V. Tugnoli, O. Rossetto, D. De Grandis, and C. Montecucco, “Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans,” Neuroscience Letters, vol. 256, no. 3, pp. 135–138, 1998.
[80]  S. S. Arnon, R. Schechter, T. V. Inglesby et al., “Botulinum toxin as a biological weapon: medical and public health management,” Journal of the American Medical Association, vol. 285, no. 8, pp. 1059–1070, 2001.
[81]  A. de Paiva, F. A. Meunier, J. Molgó, K. R. Aoki, and J. O. Dolly, “Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 3200–3205, 1999.
[82]  J. Ma, G. A. Elsaidi, T. L. Smith et al., “Time course of recovery of juvenile skeletal muscle after botulinum toxin A injection: an animal model study,” American Journal of Physical Medicine and Rehabilitation, vol. 83, no. 10, pp. 774–809, 2004.
[83]  R. Fortuna, M. Aurélio Vaz, A. Rehan Youssef, D. Longino, and W. Herzog, “Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox),” Journal of Biomechanics, vol. 44, no. 1, pp. 39–44, 2011.
[84]  S.-W. Tsai, C.-J. Chen, H.-L. Chen, C.-M. Chen, and Y.-Y. Chang, “Effects of treadmill running on rat gastrocnemius function following botulinum toxin A injection,” Journal of Orthopaedic Research, vol. 30, no. 2, pp. 319–324, 2012.
[85]  A. V. Stone, J. Ma, P. W. Whitlock et al., “Effects of Botox and Neuronox on muscle force generation in mice,” Journal of Orthopaedic Research, vol. 25, no. 12, pp. 1658–1664, 2007.
[86]  A. Irintchev, T. F. Salvini, A. Faissner, and A. Wernig, “Differential expression of tenascin after denervation, damage or paralysis of mouse soleus muscle,” Journal of Neurocytology, vol. 22, no. 11, pp. 955–965, 1993.
[87]  S. W. Tsai, Y. T. Tung, H. L. Chen et al., “Treadmill running upregulates the expression of acetylcholine receptor in rat gastrocnemius following botulinum toxin A injection,” Journal of Orthopaedic Research, vol. 31, no. 1, pp. 125–131, 2013.
[88]  C. G. Frick, M. Richtsfeld, N. D. Sahani, M. Kaneki, M. Blobner, and J. A. J. Martyn, “Long-term effects of botulinum toxin on neuromuscular function,” Anesthesiology, vol. 106, no. 6, pp. 1139–1146, 2007.
[89]  C. Swartling, C. F?rnstrand, G. Abt, E. St?lberg, and H. Naver, “Side-effects of intradermal injections of botulinum A toxin in the treatment of palmar hyperhidrosis: a neurophysiological study,” European Journal of Neurology, vol. 8, no. 5, pp. 451–456, 2001.
[90]  M. H. Ross, M. E. Charness, L. Sudarsky, et al., “Treatment of occupational cramp with botulinum toxin: diffusion of toxin to adjacent noninjected muscles,” Muscle Nerve, vol. 20, pp. 593–598, 1997.
[91]  D. Dressler and R. Benecke, “Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis,” European Neurology, vol. 49, no. 1, pp. 34–38, 2003.
[92]  S. L. Dodd, J. Selsby, A. Payne, A. Judge, and C. Dott, “Botulinum neurotoxin type A causes shifts in myosin heavy chain composition in muscle,” Toxicon, vol. 46, no. 2, pp. 196–203, 2005.
[93]  W. C. Yee and A. Pestronk, “Mechanisms of postsynaptic plasticity: remodeling of the junctional acetylcholine receptor cluster induced by motor nerve terminal outgrowth,” Journal of Neuroscience, vol. 7, no. 7, pp. 2019–2024, 1987.
[94]  A. A. Rogozhin, K. K. Pang, E. Bukharaeva, C. Young, and C. R. Slater, “Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A,” Journal of Physiology, vol. 586, no. 13, pp. 3163–3182, 2008.
[95]  J. Ma, J. Shen, C. A. Lee et al., “Gene expression of nAChR, SNAP-25 and GAP-43 in skeletal muscles following botulinum toxin A injection: a study in rats,” Journal of Orthopaedic Research, vol. 23, no. 2, pp. 302–309, 2005.
[96]  R. Olabisi, C. S. Chamberlain, S. Petr et al., “The effects of botulinum toxin A on muscle histology during distraction osteogenesis,” Journal of Orthopaedic Research, vol. 27, no. 3, pp. 310–317, 2009.
[97]  J. Shen, J. Ma, G. A. Elsaidi et al., “Gene expression of myogenic regulatory factors following intramuscular injection of botulinum A toxin in juvenile rats,” Neuroscience Letters, vol. 381, no. 3, pp. 207–210, 2005.
[98]  J. E. Misiaszek and K. G. Pearson, “Adaptive changes in locomotor activity following botulinum toxin injection in ankle extensor muscles of cats,” Journal of Neurophysiology, vol. 87, no. 1, pp. 229–239, 2002.
[99]  K. G. Pearson and J. E. Misiaszek, “Use-dependent gain change in the reflex contribution to extensor activity in walking cats,” Brain Research, vol. 883, no. 1, pp. 131–134, 2000.
[100]  V. Gritsenko, V. Mushahwar, and A. Prochazka, “Adaptive changes in locomotor control after partial denervation of triceps surae muscles in the cat,” Journal of Physiology, vol. 533, no. 1, pp. 299–311, 2001.
[101]  J. A. Hamjian and F. O. Walker, “Serial neurophysiological studies of intramuscular botulinum-A toxin in humans,” Muscle and Nerve, vol. 17, no. 12, pp. 1385–1392, 1994.
[102]  R. L. Holland and M. C. Brown, “Postsynaptic transmission block can cause terminal sprouting of a motor nerve,” Science, vol. 207, no. 4431, pp. 649–651, 1980.
[103]  J. P. de Bono, D. Adlam, D. J. Paterson, and K. M. Channon, “Novel quantitative phenotypes of exercise training in mouse models,” American Journal of Physiology: Regulatory Integrative and Comparative Physiology, vol. 290, no. 4, pp. R926–R934, 2006.
[104]  D. L. Allen, B. C. Harrison, A. Maass, M. L. Bell, W. C. Byrnes, and L. A. Leinwand, “Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse,” Journal of Applied Physiology, vol. 90, no. 5, pp. 1900–1908, 2001.
[105]  I. Girard, M. W. McAleer, J. S. Rhodes, and T. Garland Jr., “Selection for high voluntary wheel-running increases speed and intermittency in house mice (Mus domesticus),” Journal of Experimental Biology, vol. 204, no. 24, pp. 4311–4320, 2001.
[106]  S. Kinugawa, Z. Wang, P. M. Kaminski et al., “Limited exercise capacity in heterozygous manganese superoxide dismutase gene-knockout mice: roles of superoxide anion and nitric oxide,” Circulation, vol. 111, no. 12, pp. 1480–1486, 2005.
[107]  T. Fukai, M. R. Siegfried, M. Ushio-Fukai, Y. Cheng, G. Kojda, and D. G. Harrison, “Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 631–1639, 2000.
[108]  D. A. Brown, M. S. Johnson, C. J. Armstrong et al., “Short-term treadmill running in the rat: what kind of stressor is it?” Journal of Applied Physiology, vol. 103, no. 6, pp. 1979–1985, 2007.
[109]  M. Chen, N. Susan Stott, and H. K. Smith, “Effects of botulinum toxin A injection and exercise on the growth of juvenile rat gastrocnemius muscle,” Journal of Applied Physiology, vol. 93, no. 4, pp. 1437–1447, 2002.
[110]  M. Velders, K. Legerlotz, S. J. Falconer, N. S. Stott, C. D. McMahon, and H. K. Smith, “Effect of botulinum toxin A-induced paralysis and exercise training on mechanosensing and signalling gene expression in juvenile rat gastrocnemius muscle,” Experimental Physiology, vol. 93, no. 12, pp. 1273–1283, 2008.
[111]  J. R. Bain, S. E. Mackinnon, and D. A. Hunter, “Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat,” Plastic and Reconstructive Surgery, vol. 83, no. 1, pp. 129–136, 1989.
[112]  V. V. Monte-Raso, C. H. Barbieri, N. Mazzer, A. C. Yamasita, and G. Barbieri, “Is the sciatic functional index always reliable and reproducible?” Journal of Neuroscience Methods, vol. 170, no. 2, pp. 255–261, 2008.
[113]  C.-J. Chen, Y.-C. Ou, S.-L. Liao et al., “Transplantation of bone marrow stromal cells for peripheral nerve repair,” Experimental Neurology, vol. 204, no. 1, pp. 443–453, 2007.
[114]  J. C. M. Andreani and C. Guma, “New animal model to mimic spastic cerebral palsy: the brain-damaged pig preparation,” Neuromodulation, vol. 11, no. 3, pp. 196–201, 2008.
[115]  M. Derrick, A. Drobyshevsky, X. Ji, and S. Tan, “A model of cerebral palsy from fetal hypoxia-ischemia,” Stroke, vol. 38, no. 2, pp. 731–735, 2007.
[116]  S. Tan, A. Drobyshevsky, T. Jilling et al., “Model of cerebral palsy in the perinatal rabbit,” Journal of Child Neurology, vol. 20, no. 12, pp. 972–979, 2005.
[117]  F. Strata, J.-O. Coq, N. Byl, and M. M. Merzenich, “Effects of sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy,” Neuroscience, vol. 129, no. 1, pp. 141–156, 2004.
[118]  V. Dietz, “Studies on the spastic rat: an adequate model for human spastic movement disorder?” Journal of Neurophysiology, vol. 99, no. 2, pp. 1039–1040, 2008.
[119]  A. W. English, J. C. Wilhelm, and M. J. Sabatier, “Enhancing recovery from peripheral nerve injury using treadmill training,” Annals of Anatomy, vol. 193, no. 4, pp. 354–361, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133