全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Simple Spatial Working Memory and Attention Test on Paired Symbols Shows Developmental Deficits in Schizophrenia Patients

DOI: 10.1155/2013/130642

Full-Text   Cite this paper   Add to My Lib

Abstract:

People with neuropsychiatric disorders such as schizophrenia often display deficits in spatial working memory and attention. Evaluating working memory and attention in schizophrenia patients is usually based on traditional tasks and the interviewer’s judgment. We developed a simple Spatial Working Memory and Attention Test on Paired Symbols (SWAPS). It takes only several minutes to complete, comprising 101 trials for each subject. In this study, we tested 72 schizophrenia patients and 188 healthy volunteers in China. In a healthy control group with ages ranging from 12 to 60, the efficiency score (accuracy divided by reaction time) reached a peak in the 20–27 age range and then declined with increasing age. Importantly, schizophrenia patients failed to display this developmental trend in the same age range and adults had significant deficits compared to the control group. Our data suggests that this simple Spatial Working Memory and Attention Test on Paired Symbols can be a useful tool for studies of spatial working memory and attention in neuropsychiatric disorders. 1. Introduction Studies have shown working memory [1–3] and attention [4, 5] deficits in individuals with schizophrenia. Working memory is a temporary storage facility that lasts for only seconds, accessible to conscious attention. It is fundamentally important as it underpins capacity for complex thought [6]. The visuospatial sketchpad theory proposes that the visual and spatial impression of a limited number of objects is temporarily stored, manipulated, and allows subselections to be created through the focus of attention [7]. Attention is the cognitive process of selecting some elements, from an environment (real or otherwise) while ignoring other elements and it is a precondition for exercising working memory. It determines what enters into working memory, and shifting attention can disrupt the contents of working memory. When presented with a shorter stimulus, the stimuli’s entrance into working memory may be less complete [8]. Currently, tests for working memory include the n-back task [9] which is a continuous performance task commonly used to measure a part of working memory [10], the Sternberg Item Recognition Paradigm [11, 12], the Visual Patterns Test [13], the Spatial Working Memory task (SPWM) [14], and others [15–18]. Existing tests for attention include the Continuous Performance Test (CPT) [19, 20] and the Sustained Attention Test [21]. Some existing tests require extended periods of time to complete or require verbal knowledge, which may impede the subject’s ability to

References

[1]  D. M. Barch and E. Smith, “The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia,” Biological Psychiatry, vol. 64, no. 1, pp. 11–17, 2008.
[2]  J. Lee and S. Park, “Working memory impairments in schizophrenia: a meta-analysis,” Journal of Abnormal Psychology, vol. 114, no. 4, pp. 599–611, 2005.
[3]  S. Park and P. S. Holzman, “Schizophrenics show spatial working memory deficits,” Archives of General Psychiatry, vol. 49, no. 12, pp. 975–982, 1992.
[4]  D. L. Braff, “Information processing and attention dysfunctions in schizophrenia,” Schizophrenia Bulletin, vol. 19, no. 2, pp. 233–259, 1993.
[5]  M. I. Posner, T. S. Early, E. Reiman, P. J. Pardo, and M. Dhawan, “Asymmetries in hemispheric control of attention in schizophrenia,” Archives of General Psychiatry, vol. 45, no. 9, pp. 814–821, 1988.
[6]  A. D. Baddeley, Working Memory, Thought, and Action, Oxford University Press, UK, Oxford, 2007.
[7]  S. Y. Ang and K. Lee, “Central executive involvement in children's spatial memory,” Memory, vol. 16, no. 8, pp. 918–933, 2008.
[8]  R. Lépine, S. Bernardin, and P. Barrouillet, “Attention switching and working memory spans,” European Journal of Cognitive Psychology, vol. 17, no. 3, pp. 329–345, 2005.
[9]  W. K. Kirchner, “Age differences in short-term retention of rapidly changing information,” Journal of Experimental Psychology, vol. 55, no. 4, pp. 352–358, 1958.
[10]  A. Baddeley, “Working memory: looking back and looking forward,” Nature Reviews Neuroscience, vol. 4, no. 10, pp. 829–839, 2003.
[11]  M. R. Johnson, N. A. Morris, R. S. Astur et al., “A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia,” Biological Psychiatry, vol. 60, no. 1, pp. 11–21, 2006.
[12]  S. Sternberg, “High-speed scanning in human memory,” Science, vol. 153, no. 3736, pp. 652–654, 1966.
[13]  S. Della Sala, C. Gray, A. Baddeley, N. Allamano, and L. Wilson, “Pattern span: a tool for unwelding visuo-spatial memory,” Neuropsychologia, vol. 37, no. 10, pp. 1189–1199, 1999.
[14]  S. J. Duff and E. Hampson, “A sex difference on a novel spatial working memory task in humans,” Brain and Cognition, vol. 47, no. 3, pp. 470–493, 2001.
[15]  R. B. Ekstrom and H. H. Harman, Kit of Factor-Referenced Cognitive Tests, Educational Testing Service, 1976.
[16]  D. Kimura, “Manual activity during speaking—I. Right-handers,” Neuropsychologia, vol. 11, no. 1, pp. 45–50, 1973.
[17]  E. LaBarge, D. Edwards, and J. W. Knesevich, “Performance of normal elderly on the Boston naming test,” Brain and Language, vol. 27, no. 2, pp. 380–384, 1986.
[18]  I. Silverman and M. Eals, “Sex differences in spatial abilities: evolutionary theory and data,” in The Adapted Mind: Evolutionary Psychology and the Generation of Culture, J. H. Barkow, L. Cosmides, and J. Tooby, Eds., Oxford University Press, New York, NY, USA, 1992.
[19]  H. E. Rosvold, A. F. Mirsky, I. Sarason, E. D. Bransome Jr., and L. H. Beck, “A continuous performance test of brain damage,” Journal of Consulting Psychology, vol. 20, no. 5, pp. 343–350, 1956.
[20]  C. K. Conners and M. Staff, Conners' Continuous Performance Test II, (CPT II V. 5), Multi-Health Systems, North Tonawanda, NY, USA, 2000.
[21]  S. M. Silverstein, G. Light, and D. R. Palumbo, “The sustained attention test: a measure of attentional disturbance,” Computers in Human Behavior, vol. 14, no. 3, pp. 463–475, 1998.
[22]  J. Legge, The I Ching, 1882.
[23]  M. Zuoqiu, W. Zhang, S. Guan, P. Ge, Z. Pei, and X. Chen, I Ching in Simple Chinese.
[24]  A. Hilton and R. A. Armstrong, “Statnote 6: post-hoc ANOVA tests,” Microbiologist, vol. 2006, pp. 34–36, 2006.
[25]  H. Kwon, A. L. Reiss, and V. Menon, “Neural basis of protracted developmental changes in visuo-spatial working memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 13336–13341, 2002.
[26]  L. van Leijenhorst, E. A. Crone, and M. W. van der Molen, “Developmental trends for object and spatial working memory: a psychophysiological analysis,” Child Development, vol. 78, no. 3, pp. 987–1000, 2007.
[27]  J. T. Coull and A. C. Nobre, “Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI,” The Journal of Neuroscience, vol. 18, no. 18, pp. 7426–7435, 1998.
[28]  H. J. Müller and P. M. A. Rabbitt, “Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption,” Journal of Experimental Psychology, vol. 15, no. 2, pp. 315–330, 1989.
[29]  D. S. McNamara and J. L. Scott, “Working memory capacity and strategy use,” Memory and Cognition, vol. 29, no. 1, pp. 10–17, 2001.
[30]  J. T. Townsend and F. G. Ashby, “Methods of modeling capacity in simple processing systems,” Cognitive Theory, vol. 3, pp. 200–239, 1978.
[31]  F. I. M. Craik and E. Bialystok, “Cognition through the lifespan: mechanisms of change,” Trends in Cognitive Sciences, vol. 10, no. 3, pp. 131–138, 2006.
[32]  E. A. Crone, C. Wendelken, S. Donohue, L. van Leijenhorst, and S. A. Bunge, “Neurocognitive development of the ability to manipulate information in working memory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9315–9320, 2006.
[33]  P. J. Olesen, J. Macoveanu, J. Tegnér, and T. Klingberg, “Brain activity related to working memory and distraction in children and adults,” Cerebral Cortex, vol. 17, no. 5, pp. 1047–1054, 2007.
[34]  P. C. M. P. Koolschijn, M. A. Schel, M. de Rooij, S. A. R. B. Rombouts, and E. A. Crone, “A three-year longitudinal functional magnetic resonance imaging study of performance monitoring and test-retest reliability from childhood to early adulthood,” Journal of Neuroscience, vol. 31, no. 11, pp. 4204–4212, 2011.
[35]  A. Reichenberg, A. Caspi, H. Harrington et al., “Static and dynamic cognitive deficits in childhood preceding adult schizophrenia: a 30-year study,” American Journal of Psychiatry, vol. 167, no. 2, pp. 160–169, 2010.
[36]  A. M. Clements-Stephens, S. L. Rimrodt, and L. E. Cutting, “Developmental sex differences in basic visuospatial processing: differences in strategy use?” Neuroscience Letters, vol. 449, no. 3, pp. 155–160, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133