全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Astrocytes in the Regulation of Synaptic Plasticity and Memory Formation

DOI: 10.1155/2013/185463

Full-Text   Cite this paper   Add to My Lib

Abstract:

Astrocytes regulate synaptic transmission and play a role in the formation of new memories, long-term potentiation (LTP), and functional synaptic plasticity. Specifically, astroglial release of glutamate, ATP, and cytokines likely alters the survivability and functioning of newly formed connections. Among these pathways, regulation of glutamate appears to be most directly related to the promotion of LTP, which is highly dependent on the synchronization of synaptic receptors through the regulation of excitatory postsynaptic potentials. Moreover, regulation of postsynaptic glutamate receptors, particularly AMPA receptors, is dependent on signaling by ATP synthesized in astrocytes. Finally, cytokine signaling is also implicated in regulating LTP, but is likely most important in plasticity following tissue damage. Despite the role of these signaling factors in regulating LTP and functional plasticity, an integrative model of these factors has not yet been elucidated. In this review, we seek to summarize the current body of evidence on astrocytic mechanisms for regulation of LTP and functional plasticity, and provide an integrative model of the processes. 1. Introduction The long-term storage of information in the form of memory is one of the principal functions of the developed nervous system. The ability to utilize this information provides evolutionary advantages in adapting and responding to situations in a given environment. The method for the formation of memories and the process of functional specialization in the brain during development has been found to be mediated by both structural and functional plasticity, including long-term potentiation between neurons [1]. While much attention has been given to these processes on a neuronal level, less attention has been given to what role glial cells, particularly astrocytes, may have in the underlying mechanisms. While astrocytes were formerly thought to serve mostly as housekeeping cells, they have recently gained attention as an integral part of the chemical synapse. In addition to their structural and metabolic roles, astrocytes are now thought to be heavily involved in synaptogenesis and in regulating the communication between already formed connections [2]. Several studies have demonstrated that astrocytes utilize both ionotropic and metabotropic systems in order to regulate neuron to neuron communication [3–5], and that they may have specific mechanisms for regulating the formation of memories. Here, we review recent evidence for the importance of astrocytes in both structural and functional synaptic

References

[1]  S. J. Martin, P. D. Grimwood, and R. G. M. Morris, “Synaptic plasticity and memory: an evaluation of the hypothesis,” Annual Review of Neuroscience, vol. 23, no. 1, pp. 649–711, 2000.
[2]  J. S. Bains and S. H. R. Oliet, “Glia: they make your memories stick!,” Trends in Neurosciences, vol. 30, no. 8, pp. 417–424, 2007.
[3]  N. B. Hamilton and D. Attwell, “Do astrocytes really exocytose neurotransmitters?” Nature Reviews, vol. 11, no. 4, pp. 227–238, 2010.
[4]  U. Lalo, A. Verkhratsky, and Y. Pankratov, “Ionotropic ATP receptors in neuronal-glial communication,” Seminars in Cell & Developmental Biology, vol. 22, no. 2, pp. 220–228, 2011.
[5]  A. Volterra and J. Meldolesi, “Astrocytes, from brain glue to communication elements: the revolution continues,” Nature Reviews, vol. 6, no. 8, pp. 626–640, 2005.
[6]  F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg et al., “Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain,” Journal of Comparative Neurology, vol. 513, no. 5, pp. 532–541, 2009.
[7]  S. M. Dombrowski, C. C. Hilgetag, and H. Barbas, “Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey,” Cerebral Cortex, vol. 11, no. 10, pp. 975–988, 2001.
[8]  S. Herculano-Houzel and R. Lent, “Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain,” The Journal of Neuroscience, vol. 25, no. 10, pp. 2518–2521, 2005.
[9]  C. C. Hilgetag and H. Barbas, “Are there ten times more glia than neurons in the brain?” Brain Structure & Function, vol. 213, no. 4-5, pp. 365–366, 2009.
[10]  E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, Nerve Cells and Behavior, McGraw-Hill, New York, NY, USA, 4th edition, 2000.
[11]  A. Nishiyama, Z. Yang, and A. Butt, “Astrocytes and NG2-glia: what's in a name?” Journal of Anatomy, vol. 207, no. 6, pp. 687–693, 2005.
[12]  B. Pakkenberg and H. J. G. Gundersen, “Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator,” Journal of Microscopy, vol. 150, no. 1, pp. 1–20, 1988.
[13]  N. A. Oberheim, S. A. Goldman, and M. Nedergaard, “Heterogeneity of astrocytic form and function,” Methods in Molecular Biology, vol. 814, pp. 23–45, 2012.
[14]  A. Derouiche, E. Anlauf, G. Aumann, B. Mühlst?dt, and M. Lavialle, “Anatomical aspects of glia-synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment,” Journal of Physiology, vol. 96, no. 3-4, pp. 177–182, 2002.
[15]  A. Reichenbach, A. Derouiche, and F. Kirchhoff, “Morphology and dynamics of perisynaptic glia,” Brain Research Reviews, vol. 63, no. 1-2, pp. 11–25, 2010.
[16]  A. Verkhratsky and A. Butt, Neuronal-Glial Interactions, in Glial Neurobiology: A Textbook, John Wiley & Sons, Chichester, UK, 2007.
[17]  M. Simard and M. Nedergaard, “The neurobiology of glia in the context of water and ion homeostasis,” Neuroscience, vol. 129, no. 4, pp. 877–896, 2004.
[18]  K. Holthoff and O. W. Witte, “Directed spatial potassium redistribution in rat neocortex,” Glia, vol. 29, no. 3, pp. 288–292, 2000.
[19]  P. Kofuji and E. A. Newman, “Potassium buffering in the central nervous system,” Neuroscience, vol. 129, no. 4, pp. 1045–1056, 2004.
[20]  R. K. Orkand, J. G. Nicholls, and S. W. Kuffler, “Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia,” Journal of Neurophysiology, vol. 29, no. 4, pp. 788–806, 1966.
[21]  W. Walz, “Role of astrocytes in the clearance of excess extracellular potassium,” Neurochemistry International, vol. 36, no. 4-5, pp. 291–300, 2000.
[22]  A. Araque, V. Parpura, R. P. Sanzgiri, and P. G. Haydon, “Tripartite synapses: glia, the unacknowledged partner,” Trends in Neurosciences, vol. 22, no. 5, pp. 208–215, 1999.
[23]  M. M. Halassa, T. Fellin, and P. G. Haydon, “Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior,” Neuropharmacology, vol. 57, no. 4, pp. 343–346, 2009.
[24]  M. Santello, C. Calì, and P. Bezzi, “Gliotransmission and the tripartite synapse,” Advances in Experimental Medicine and Biology, vol. 970, pp. 307–331, 2012.
[25]  V. Matyash and H. Kettenmann, “Heterogeneity in astrocyte morphology and physiology,” Brain Research Reviews, vol. 63, no. 1-2, pp. 2–10, 2010.
[26]  M. R. Witcher, S. A. Kirov, and K. M. Harris, “Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus,” Glia, vol. 55, no. 1, pp. 13–23, 2007.
[27]  E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, “Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains,” The Journal of Neuroscience, vol. 22, no. 1, pp. 183–192, 2002.
[28]  R. Ventura and K. M. Harris, “Three-dimensional relationships between hippocampal synapses and astrocytes,” The Journal of Neuroscience, vol. 19, no. 16, pp. 6897–6906, 1999.
[29]  R. A. Swanson, “Astrocyte neurotransmitter uptake,” in Neuroglia, H. Kettenmann and B. R. Ransom, Eds., pp. 346–354, Oxford University Press, Oxford, UK, 2005.
[30]  C. Iacovetta, E. Rudloff, and R. Kirby, “The role of aquaporin 4 in the brain,” Veterinary Clinical Pathology, vol. 41, no. 1, pp. 32–44, 2012.
[31]  M. C. Papadopoulos and A. S. Verkman, “Aquaporin water channels in the nervous system,” Nature Reviews, vol. 14, no. 4, pp. 265–277, 2013.
[32]  H. K. Kimelberg, “Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy,” Glia, vol. 50, no. 4, pp. 389–397, 2005.
[33]  H. K. Kimelberg, S. K. Goderie, S. Higman, S. Pang, and R. A. Waniewski, “Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures,” The Journal of Neuroscience, vol. 10, no. 5, pp. 1583–1591, 1990.
[34]  E. M. Rutledge and H. K. Kimelberg, “Release of [3H]-D-aspartate from primary astrocyte cultures in response to raised external potassium,” The Journal of Neuroscience, vol. 16, no. 24, pp. 7803–7811, 1999.
[35]  M. C. W. Kroes and G. Fernández, “Dynamic neural systems enable adaptive, flexible memories,” Neuroscience & Biobehavioral Reviews, vol. 36, no. 7, pp. 1646–1666, 2012.
[36]  W. B. Scoville and B. Milner, “Loss of recent memory after bilateral hippocampal lesions,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 20, no. 1, pp. 11–21, 1957.
[37]  L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast,” Nature Neuroscience, vol. 3, no. 11s, pp. 1178–1183, 2000.
[38]  M. Fu and Y. Zuo, “Experience-dependent structural plasticity in the cortex,” Trends in Neurosciences, vol. 34, no. 4, pp. 177–187, 2011.
[39]  H.-K. Lee, “Synaptic plasticity and phosphorylation,” Pharmacology & Therapeutics, vol. 112, no. 3, pp. 810–832, 2006.
[40]  K. Lehmann, A. Steinecke, and J. Bolz, “GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons,” Neural Plasticity, vol. 2012, Article ID 892784, 11 pages, 2012.
[41]  J. L. Chen and E. Nedivi, “Neuronal structural remodeling: is it all about access?” Current Opinion in Neurobiology, vol. 20, no. 5, pp. 557–562, 2010.
[42]  K. J. Harms and A. Dunaevsky, “Dendritic spine plasticity: looking beyond development,” Brain Research, vol. 1184, no. 1, pp. 65–71, 2007.
[43]  R. Yuste and T. Bonhoeffer, “Morphological changes in dendritic spines associated with long-term synaptic plasticity,” Annual Review of Neuroscience, vol. 24, pp. 1071–1089, 2001.
[44]  K. Okamoto, M. Bosch, and Y. Hayashi, “The roles of CaMKII and F-Actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag?” Physiology, vol. 24, no. 6, pp. 357–366, 2009.
[45]  K. Deisseroth, H. Bito, and R. W. Tsien, “Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity,” Neuron, vol. 16, no. 1, pp. 89–101, 1996.
[46]  J. A. Esteban, S.-H. Shi, C. Wilson, M. Nuriya, R. L. Huganir, and R. Malinow, “PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity,” Nature Neuroscience, vol. 6, no. 2, pp. 136–143, 2003.
[47]  L. A. Raymond, W. G. Tingley, C. D. Blackstone, K. W. Roche, and R. L. Huganir, “Glutamate receptor modulation by protein phosphorylation,” Journal of Physiology, vol. 88, no. 3, pp. 181–192, 1994.
[48]  C. Lüscher, R. A. Nicoll, R. C. Malenka, and D. Muller, “Synaptic plasticity and dynamic modulation of the postsynaptic membrane,” Nature Neuroscience, vol. 3, no. 6, pp. 545–550, 2000.
[49]  N. J. Allen and B. A. Barres, “Signaling between glia and neurons: focus on synaptic plasticity,” Current Opinion in Neurobiology, vol. 15, no. 5, pp. 542–548, 2005.
[50]  R. D. Fields and B. Stevens-Graham, “Neuroscience: new insights into neuron-glia communication,” Science, vol. 298, no. 5593, pp. 556–562, 2002.
[51]  A. Citri and R. C. Malenka, “Synaptic plasticity: multiple forms, functions, and mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 18–41, 2008.
[52]  T. L?mo, “The discovery of long-term potentiation,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1432, pp. 617–620, 2003.
[53]  G. Barrionuevo, S. R. Kelso, D. Johnston, and T. H. Brown, “Conductance mechanism responsible for long-term potentiation in monosynaptic and isolated excitatory synaptic inputs to hippocampus,” Journal of Neurophysiology, vol. 55, no. 3, pp. 540–550, 1986.
[54]  G. L. Collingridge, S. J. Kehl, and H. McLennan, “Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus,” Journal of Physiology, vol. 334, pp. 33–46, 1983.
[55]  E. W. Harris and C. W. Cotman, “Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists,” Neuroscience Letters, vol. 70, no. 1, pp. 132–137, 1986.
[56]  E. W. Harris, A. H. Ganong, and C. W. Cotman, “Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors,” Brain Research, vol. 323, no. 1, pp. 132–137, 1984.
[57]  R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004.
[58]  D. M. Bannerman, M. A. Good, S. P. Butcher, M. Ramsay, and R. G. M. Morris, “Distinct components of spatial learning revealed by prior training and NMDA receptor blockade,” Nature, vol. 378, no. 6553, pp. 182–186, 1995.
[59]  I. Lee and R. P. Kesner, “Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory,” Nature Neuroscience, vol. 5, no. 2, pp. 162–168, 2002.
[60]  K. Nakazawa, M. C. Quirk, R. A. Chitwood et al., “Requirement for hippocampal CA3 NMDA receptors in associative memory recall,” Science, vol. 297, no. 5579, pp. 211–218, 2002.
[61]  J. Z. Tsien, P. T. Huerta, and S. Tonegawa, “The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory,” Cell, vol. 87, no. 7, pp. 1327–1338, 1996.
[62]  E. R. Kandel, “The molecular biology of memory storage: a dialogue between genes and synapses,” Science, vol. 294, no. 5544, pp. 1030–1038, 2001.
[63]  M. Mayford, S. A. Siegelbaum, and E. Kandel, “Synapses and memory storage,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 6, 2012.
[64]  E. Miyamoto, “Molecular mechanism of neuronal plasticity: Induction and maintenance of long-term potentiation in the hippocampus,” Journal of Pharmacological Sciences, vol. 100, no. 5, pp. 433–442, 2006.
[65]  D. T. Theodosis, D. A. Poulain, and S. H. R. Oliet, “Activity-dependent structural and functional plasticity of astrocyte-neuron interactions,” Physiological Reviews, vol. 88, no. 3, pp. 983–1008, 2008.
[66]  A. H. Cornell-Bell, P. G. Thomas, and S. J. Smith, “The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes,” Glia, vol. 3, no. 5, pp. 322–334, 1990.
[67]  S. R. Glaum, J. A. Holzwarth, and R. J. Miller, “Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 9, pp. 3454–3458, 1990.
[68]  D. E. Bergles and C. E. Jahr, “Synaptic activation of glutamate transporters in hippocampal astrocytes,” Neuron, vol. 19, no. 6, pp. 1297–1308, 1997.
[69]  D. A. Rusakov, K. Zheng, and C. Henneberger, “Astrocytes as regulators of synaptic function: a quest for the Ca2+ master Key,” Neuroscientist, vol. 17, no. 5, pp. 513–523, 2011.
[70]  F. Conti, S. DeBiasi, A. Minelli, and M. Melone, “Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes,” Glia, vol. 17, no. 3, pp. 254–258, 1998.
[71]  U. Lalo, Y. Pankratov, F. Kirchhoff, R. A. North, and A. Verkhratsky, “NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes,” The Journal of Neuroscience, vol. 26, no. 10, pp. 2673–2683, 2006.
[72]  C. Steinh?user and V. Gallo, “News on glutamate receptors in glial cells,” Trends in Neurosciences, vol. 19, no. 8, pp. 339–345, 1996.
[73]  D. Fan, S. Y. Grooms, R. C. Araneda et al., “AMPA receptor protein expression and function in astrocytes cultured from hippocampus,” Journal of Neuroscience Research, vol. 57, pp. 557–571, 1999.
[74]  M. Zhou and H. K. Kimelberg, “Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression,” The Journal of Neuroscience, vol. 21, no. 20, pp. 7901–7908, 2001.
[75]  G. Seifert, M. Zhou, and C. Steinh?user, “Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes,” Journal of Neurophysiology, vol. 78, no. 6, pp. 2916–2923, 1997.
[76]  M. Amiri, F. Bahrami, and M. Janahmadi, “Functional contributions of astrocytes in synchronization of a neuronal network model,” Journal of Theoretical Biology, vol. 292, pp. 60–70, 2012.
[77]  M. Amiri, N. Hosseinmardi, F. Bahrami, and M. Janahmadi, “Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments,” Journal of Computational Neuroscience, vol. 34, no. 3, pp. 489–504, 2013.
[78]  M. C. Angulo, A. S. Kozlov, S. Charpak, and E. Audinat, “Glutamate released from glial cells synchronizes neuronal activity in the hippocampus,” The Journal of Neuroscience, vol. 24, no. 31, pp. 6920–6927, 2004.
[79]  L. K. Bekar, M. E. Loewen, K. Cao et al., “Complex expression and localization of inactivating Kv channels in cultured hippocampal astrocytes,” Journal of Neurophysiology, vol. 93, no. 3, pp. 1699–1709, 2005.
[80]  P. Jourdain, L. H. Bergersen, K. Bhaukaurally et al., “Glutamate exocytosis from astrocytes controls synaptic strength,” Nature Neuroscience, vol. 10, no. 3, pp. 331–339, 2007.
[81]  C. Henneberger, T. Papouin, S. H. R. Oliet, and D. A. Rusakov, “Long-term potentiation depends on release of D-serine from astrocytes,” Nature, vol. 463, no. 7278, pp. 232–236, 2010.
[82]  J.-P. Mothet, A. T. Parent, H. Wolosker et al., “D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4926–4931, 2000.
[83]  M. J. Schell, M. E. Molliver, and S. H. Snyder, “D-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 3948–3952, 1995.
[84]  M. Shleper, E. Kartvelishvily, and H. Wolosker, “D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices,” The Journal of Neuroscience, vol. 25, no. 41, pp. 9413–9417, 2005.
[85]  M. Bernstein, T. Behnisch, D. Balschun, K. G. Reymann, and G. Reiser, “Pharmacological characterisation of metabotropic glutamatergic and purinergic receptors linked to Ca2+ signalling in hippocampal astrocytes,” Neuropharmacology, vol. 37, no. 2, pp. 169–178, 1998.
[86]  M. E. Gibbs and D. N. Bowser, “Astrocytes and interneurons in memory processing in the chick hippocampus: roles for G-coupled protein receptors, GABA(B) and mGluR1,” Neurochemical Research, vol. 34, no. 10, pp. 1712–1720, 2009.
[87]  Z. Cai, G. P. Schools, and H. K. Kimelbert, “Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression,” Glia, vol. 29, pp. 70–80, 2000.
[88]  R. J. Cormier, S. Mennerick, H. Melbostad, and C. F. Zorumski, “Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes,” Glia, vol. 33, no. 1, pp. 24–35, 2001.
[89]  E. Aronica, J. A. Gorter, H. Ijlst-Keizers et al., “Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins,” European Journal of Neuroscience, vol. 17, no. 10, pp. 2106–2118, 2003.
[90]  W. Sun, E. McConnell, J. F. Pare et al., “Glutamate-dependent neuroglial calcium signaling differs between young and adult brain,” Science, vol. 339, no. 6116, pp. 197–200, 2013.
[91]  S. B. Achour, L. Pont-Lezica, C. Béchade, and O. Pascual, “Is astrocyte calcium signaling relevant for synaptic plasticity?” Neuron Glia Biology, vol. 6, no. 3, pp. 147–155, 2010.
[92]  V. Parpura and R. Zorec, “Gliotransmission: exocytotic release from astrocytes,” Brain Research Reviews, vol. 63, no. 1-2, pp. 83–92, 2010.
[93]  Q. Zhang, T. Pangr?i?, M. Kreft et al., “Fusion-related release of glutamate from astrocytes,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12724–12733, 2004.
[94]  M. Martineau, T. Shi, J. Puyal et al., “Storage and uptake of D-serine into astrocytic synaptic like vesicles specify gliotranmission,” The Journal of Neuroscience, vol. 33, no. 8, pp. 3413–3423, 2013.
[95]  A. Wilhelm, W. Volknandt, D. Langer, C. Nolte, H. Kettenmann, and H. Zimmermann, “Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ,” Neuroscience Research, vol. 48, no. 3, pp. 249–257, 2004.
[96]  P. B. Guthrie, J. Knappenberger, M. Segal, M. V. L. Bennett, A. C. Charles, and S. B. Kater, “ATP released from astrocytes mediates glial calcium waves,” The Journal of Neuroscience, vol. 8, pp. 1078–1086, 1999.
[97]  E. A. Newman, “Glial cell inhibition of neurons by release of ATP,” The Journal of Neuroscience, vol. 23, no. 5, pp. 1659–1666, 2003.
[98]  C. Calì and P. Bezzi, “CXCR4-mediated glutamate exocytosis from astrocytes,” Journal of Neuroimmunology, vol. 224, no. 1-2, pp. 13–21, 2010.
[99]  E. C. Beattie, D. Stellwagen, W. Morishita et al., “Control of synaptic strength by glial TNFα,” Science, vol. 295, no. 5563, pp. 2282–2285, 2002.
[100]  M. Santello, P. Bezzi, and A. Volterra, “TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus,” Neuron, vol. 69, no. 5, pp. 988–1001, 2011.
[101]  Y.-J. Gao and R.-R. Ji, “Chemokines, neuronal-glial interactions, and central processing of neuropathic pain,” Pharmacology & Therapeutics, vol. 126, no. 1, pp. 56–68, 2010.
[102]  C. Agulhon, T. A. Fiacco, and K. D. McCarthy, “Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling,” Science, vol. 327, no. 5970, pp. 1250–1254, 2010.
[103]  T. A. Fiacco, C. Agulhon, S. R. Taves et al., “Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity,” Neuron, vol. 54, no. 4, pp. 611–626, 2007.
[104]  J. Petravicz, T. A. Fiacco, and K. D. McCarthy, “Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity,” The Journal of Neuroscience, vol. 28, no. 19, pp. 4967–4973, 2008.
[105]  M. E. Gibbs and L. Hertz, “Inhibition of astrocytic energy metabolism by D-lactate exposure impairs memory,” Neurochemistry International, vol. 52, no. 6, pp. 1012–1018, 2008.
[106]  L. A. Newman, D. L. Korol, and P. E. Gold, “Lactate produced by glycogenolysis in astrocytes regulates memory processing,” PLoS ONE, vol. 6, no. 12, Article ID e28427, 2011.
[107]  A. Suzuki, S. A. Stern, O. Bozdagi et al., “Astrocyte-neuron lactate transport is required for long-term memory formation,” Cell, vol. 144, no. 5, pp. 810–823, 2011.
[108]  C. Bourgin, K. K. Murai, M. Richter, and E. B. Pasquale, “The EphA4 receptor regulates dendritic spine remodeling by affecting β1-integrin signaling pathways,” Journal of Cell Biology, vol. 178, no. 7, pp. 1295–1307, 2007.
[109]  M. Hruska and M. B. Dalva, “Ephrin regulation of synapse formation, function and plasticity,” Molecular and Cellular Neuroscience, vol. 50, no. 1, pp. 35–44, 2012.
[110]  R. Klein, “Eph/ephrin signaling in morphogenesis, neural development and plasticity,” Current Opinion in Cell Biology, vol. 16, no. 5, pp. 580–589, 2004.
[111]  A. Martínez and E. Soriano, “Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system,” Brain Research Reviews, vol. 49, no. 2, pp. 211–226, 2005.
[112]  K. K. Murai, L. N. Nguyen, F. Irie, Y. Yu, and E. B. Pasquale, “Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling,” Nature Neuroscience, vol. 6, no. 2, pp. 153–160, 2003.
[113]  P. A. Yates, A. L. Roskies, T. McLaughlin, and D. D. M. O'Leary, “Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development,” The Journal of Neuroscience, vol. 21, no. 21, pp. 8548–8563, 2001.
[114]  L. Zhou, S. J. Martinez, M. Haber et al., “EphA4 signaling regulates phospholipase Cγ1 activation, cofilin membrane association, and dendritic spine morphology,” The Journal of Neuroscience, vol. 27, no. 19, pp. 5127–5138, 2007.
[115]  M. A. Carmona, K. K. Murai, L. Wang, A. J. Roberts, and E. B. Pasqualea, “Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 30, pp. 12524–12529, 2009.
[116]  L. E. Clarke and B. A. Barres, “Emerging roles of astrocytes in neural circuit development,” Nature Reviews, vol. 14, pp. 311–321, 2013.
[117]  A. Filosa, S. Paixo, S. D. Honsek et al., “Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport,” Nature Neuroscience, vol. 12, no. 10, pp. 1285–1292, 2009.
[118]  S. Paixao and R. Klein, “Neuron-astrocyte communication and synaptic plasticity,” Signaling Mechanisms, vol. 20, no. 4, pp. 466–473, 2010.
[119]  Z. Zhuang, B. Yang, M. H. Theus et al., “EphrinBs regulate D-serine synthesis and release in astrocytes,” The Journal of Neuroscience, vol. 30, no. 47, pp. 16015–16024, 2010.
[120]  C. T. Blits-Huizinga, C. M. Nelersa, A. Malhotra, and D. J. Liebl, “Ephrins and their receptors: binding versus biology,” IUBMB Life, vol. 56, no. 5, pp. 257–265, 2004.
[121]  C. M. Hernandez and A. V. Terry Jr., “Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor,” Neuroscience, vol. 130, no. 4, pp. 997–1012, 2005.
[122]  A. N. Placzek, T. A. Zhang, and J. A. Dani, “Nicotinic mechanisms influencing synaptic plasticity in the hippocampus,” Acta Pharmacologica Sinica, vol. 30, no. 6, pp. 752–760, 2009.
[123]  G. Sharma and S. Vijayaraghavan, “Nicotinic receptor signaling in nonexcitable cells,” Journal of Neurobiology, vol. 53, no. 4, pp. 524–534, 2002.
[124]  P. Newhouse, K. Kellar, P. Aisen et al., “Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial,” Neurology, vol. 78, no. 2, pp. 91–101, 2012.
[125]  M. López-Hidalgo, K. Salgado-Puga, R. Alvarado-Martínez, et al., “Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory,” PLoS ONE, vol. 7, no. 11, 2012.
[126]  M. Navarrete, G. Perea, D. F. de Sevilla et al., “Astrocytes mediate in vivo cholinergic-induced synaptic plasticity,” PLoS Biology, vol. 10, no. 2, Article ID e1001259, 2012.
[127]  M. K. Shelton and K. D. McCarthy, “Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ,” Journal of Neurochemistry, vol. 74, no. 2, pp. 555–563, 2000.
[128]  N. Takata, T. Mishima, C. Hisatsune et al., “Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo,” The Journal of Neuroscience, vol. 31, no. 49, pp. 18155–18165, 2011.
[129]  C. Florian, C. G. Vecsey, M. M. Halassa, P. G. Haydon, and T. Abel, “Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice,” The Journal of Neuroscience, vol. 31, no. 19, pp. 6956–6962, 2011.
[130]  D. J. Hines, L. I. Schmitt, R. M. Hines, S. J. Moss, and P. G. Haydon, “Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling,” Translational Psychiatry, vol. 3, article e212, 2013.
[131]  A. Nadjar, T. Blutstein, A. Aubert, S. Laye, and P. G. Haydon, “Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response,” Glia, vol. 61, pp. 724–731, 2013.
[132]  A. Avital, I. Goshen, A. Kamsler et al., “Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity,” Hippocampus, vol. 13, no. 7, pp. 826–834, 2003.
[133]  I. Goshen, T. Kreisel, H. Ounallah-Saad et al., “A dual role for interleukin-1 in hippocampal-dependent memory processes,” Psychoneuroendocrinology, vol. 32, no. 8-10, pp. 1106–1115, 2007.
[134]  O. Ben Menachem-Zidon, I. Goshen, T. Kreisel et al., “Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis,” Neuropsychopharmacology, vol. 33, no. 9, pp. 2251–2262, 2008.
[135]  R. Yirmiya, G. Winocur, and I. Goshen, “Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning,” Neurobiology of Learning and Memory, vol. 78, no. 2, pp. 379–389, 2002.
[136]  E. M. Ban, L. L. Sarlieve, and F. G. Haour, “Interleukin-1 binding sites on astrocytes,” Neuroscience, vol. 52, no. 3, pp. 725–733, 1993.
[137]  E. T. Cunningham Jr., E. Wada, D. B. Carter, D. E. Tracey, J. F. Battey, and E. B. De Souza, “In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse,” The Journal of Neuroscience, vol. 12, no. 3, pp. 1101–1114, 1992.
[138]  W. J. Friedman, “Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia,” Experimental Neurology, vol. 168, no. 1, pp. 23–31, 2001.
[139]  O. Ben Menachem-Zidon, A. Avital, Y. Ben-Menahem et al., “Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling,” Brain, Behavior, and Immunity, vol. 25, no. 5, pp. 1008–1016, 2011.
[140]  T. Toshihiro, D. E. Tracey, W. M. Mitchell, and E. B. De Souza, “Interleukin-1 receptors in mouse brain: characterization and neuronal localization,” Endocrinology, vol. 127, no. 6, pp. 3070–3078, 1990.
[141]  O. Pascual, K. B. Casper, C. Kubera et al., “Neurobiology: astrocytic purinergic signaling coordinates synaptic networks,” Science, vol. 310, no. 5745, pp. 113–116, 2005.
[142]  J. W. Dani, A. Chernjavsky, and S. J. Smith, “Neuronal activity triggers calcium waves in hippocampal astrocyte networks,” Neuron, vol. 8, no. 3, pp. 429–440, 1992.
[143]  J. T. Porter and K. D. McCarthy, “Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals,” The Journal of Neuroscience, vol. 16, no. 16, pp. 5073–5081, 1996.
[144]  M. A. di Castro, J. Chuquet, N. Liaudet et al., “Local Ca2+ detection and modulation of synaptic release by astrocytes,” Nature Neuroscience, vol. 14, no. 10, pp. 1276–1284, 2011.
[145]  A. Panatier, J. Vallée, M. Haber, K. K. Murai, J.-C. Lacaille, and R. Robitaille, “Astrocytes are endogenous regulators of basal transmission at central synapses,” Cell, vol. 146, no. 5, pp. 785–798, 2011.
[146]  X. Han, M. Chen, F. Wang, et al., “Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice,” Cell Stem Cell, vol. 12, no. 3, pp. 342–353, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133