全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GluN3A: An NMDA Receptor Subunit with Exquisite Properties and Functions

DOI: 10.1155/2013/145387

Full-Text   Cite this paper   Add to My Lib

Abstract:

N-methyl-D-aspartate receptors (NMDAR) are pivotal for synaptic plasticity and memory formation. Conventional NMDAR consist of heterotetrameric structures composed of GluN1 and GluN2 subunits. A third subunit, GluN3, can also assemble with NMDAR subunits giving a remarkable modification of their heteromeric structure, forming a “nonconventional” NMDAR. As a consequence, the stoichiometry and kinetic properties of the receptors are dramatically changed. Among the GluN3 family, the GluN3A subunit has been the focus of a large amount of studies during recent years. These studies reveal that GluN3A is transiently expressed during development and could play a role in the fine tuning of neuronal networks as well as associated diseases. Moreover, GluN3A distribution outside the postsynaptic densities, including perisynaptic astrocytes, places it at a strategic position to play an important role in the interactions between neurons and glial cells. This review highlights GluN3A properties and addresses its role in neurophysiology and associated pathologies. 1. Introduction The glutamatergic network during postnatal development is under a tight regulation controlled by activity. This activity is mediated by postsynaptic ionotropic glutamate receptors (iGluR), NMDAR, and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPAR) as well as metabotropic glutamate receptors (mGluR) [1]. Indeed, activation of NMDAR promotes the insertion of AMPAR to the synapse, inducing long-term potentiation (LTP) [2]. In contrast, a reduction in NMDAR activation promotes the removal of AMPAR, provoking long-term depression (LTD) [3]. These functional synaptic plasticity properties are tightly linked with structural modifications such as enlargements and reductions in dendritic spine size or even formation and elimination of synapses [4–6]. These mechanisms are directly influenced by postsynaptic calcium (Ca2+) [7], and Ca2+ influx is strongly controlled by NMDAR subunit composition [8, 9]. While GluN1 and GluN2 are the main subunits forming functional NMDAR [10–12], a third member of the family, GluN3, provides entirely new properties to NMDAR kinetics, especially with regard to Ca2+ permeability [13, 14]. When coassembled with GluN1 and GluN2 subunits, GluN3A exerts a dominant-negative effect on NMDAR properties [13, 15, 16]. Its presence dominates the properties of NMDAR resulting in a negative action on NMDAR, that is, insensitivity to magnesium (Mg2+) and reduced Ca2+ influx. Predominately expressed during post-natal development, GluN3A has a strong impact on

References

[1]  R. C. Malenka and R. A. Nicoll, “NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms,” Trends in Neurosciences, vol. 16, no. 12, pp. 521–527, 1993.
[2]  R. Malinow, Z. F. Mainen, and Y. Hayashi, “LTP mechanisms: from silence to four-lane traffic,” Current Opinion in Neurobiology, vol. 10, no. 3, pp. 352–357, 2000.
[3]  R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004.
[4]  Q. Zhou, K. J. Homma, and M.-M. Poo, “Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses,” Neuron, vol. 44, no. 5, pp. 749–757, 2004.
[5]  M. Matsuzaki, N. Honkura, G. C. R. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature, vol. 429, no. 6993, pp. 761–766, 2004.
[6]  N. Toni, P.-A. Buchs, I. Nikonenko, C. R. Bron, and D. Muller, “LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite,” Nature, vol. 402, no. 6760, pp. 421–425, 1999.
[7]  C. J. Mcbain and M. L. Mayer, “N-methyl-D-aspartic acid receptor structure and function,” Physiological Reviews, vol. 74, no. 3, pp. 723–760, 1994.
[8]  E. M. Quinlan, D. H. Olstein, and M. F. Bear, “Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12876–12880, 1999.
[9]  A. Barria and R. Malinow, “Subunit-specific NMDA receptor trafficking to synapses,” Neuron, vol. 35, no. 2, pp. 345–353, 2002.
[10]  M. Sheng, J. Cummings, L. A. Roldan, Y. N. Jan, and L. Y. Jan, “Changing subunit composition of heteromeric NMDA receptors during development of rat cortex,” Nature, vol. 368, no. 6467, pp. 144–147, 1994.
[11]  R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacological Reviews, vol. 51, no. 1, pp. 7–61, 1999.
[12]  S. F. Traynelis, L. P. Wollmuth, C. J. McBain et al., “Glutamate receptor ion channels: structure, regulation, and function,” Pharmacological Reviews, vol. 62, no. 3, pp. 405–496, 2010.
[13]  G. Tong, H. Takahashi, S. Tu et al., “Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons,” Journal of Neurophysiology, vol. 99, no. 1, pp. 122–132, 2008.
[14]  I. Pérez-Ota?o, C. T. Schulteis, A. Contractor et al., “Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors,” Journal of Neuroscience, vol. 21, no. 4, pp. 1228–1237, 2001.
[15]  A. M. Ciabarra, J. M. Sullivan, L. G. Gahn, G. Pecht, S. Heinemann, and K. A. Sevarino, “Cloning and characterization of χ-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family,” Journal of Neuroscience, vol. 15, no. 10, pp. 6498–6508, 1995.
[16]  N. J. Sucher, S. Akbarian, C. L. Chi et al., “Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain,” Journal of Neuroscience, vol. 15, no. 10, pp. 6509–6520, 1995.
[17]  S. Das, Y. F. Sasaki, T. Rothe et al., “Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A,” Nature, vol. 393, no. 6683, pp. 377–381, 1998.
[18]  A. C. Roberts, J. Díez-García, R. M. Rodriguiz, et al., “Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation,” Neuron, vol. 63, no. 3, pp. 342–356, 2009.
[19]  T. Yuan and C. Bellone, “Glutamatergic receptors at developing synapses: the role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors,” European Journal of Pharmacology, 2013.
[20]  A. Volterra and J. Meldolesi, “Astrocytes, from brain glue to communication elements: the revolution continues,” Nature Reviews Neuroscience, vol. 6, no. 8, pp. 626–640, 2005.
[21]  A. Reichenbach, A. Derouiche, and F. Kirchhoff, “Morphology and dynamics of perisynaptic glia,” Brain Research Reviews, vol. 63, no. 1-2, pp. 11–25, 2010.
[22]  T. Fellin, O. Pascual, S. Gobbo, T. Pozzan, P. G. Haydon, and G. Carmignoto, “Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors,” Neuron, vol. 43, no. 5, pp. 729–743, 2004.
[23]  A. Panatier, D. T. Theodosis, J.-P. Mothet et al., “Glia-derived d-serine controls NMDA receptor activity and synaptic memory,” Cell, vol. 125, no. 4, pp. 775–784, 2006.
[24]  I. Pérez-Ota?o, R. Luján, S. J. Tavalin et al., “Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1,” Nature Neuroscience, vol. 9, no. 5, pp. 611–621, 2006.
[25]  M.-C. Lee, K. K. Ting, S. Adams, B. J. Brew, R. Chung, and G. J. Guillemin, “Characterisation of the expression of NMDA receptors in human astrocytes,” PLoS ONE, vol. 5, no. 11, Article ID e14123, 2010.
[26]  A. Sanz-Clemente, R. A. Nicoll, and K. W. Roche, “Diversity in NMDA receptor composition: many regulators, many consequences,” Neuroscientist, vol. 19, no. 1, pp. 62–75, 2013.
[27]  J. A. Gray, Y. Shi, H. Usui, M. J. During, K. Sakimura, and R. A. Nicoll, “Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo,” Neuron, vol. 71, no. 6, pp. 1085–1101, 2011.
[28]  M. Farrant, D. Feldmeyer, T. Takahashi, and S. G. Cull-Candy, “NMDA-receptor channel diversity in the developing cerebellum,” Nature, vol. 368, no. 6469, pp. 335–339, 1994.
[29]  H. Monyer, R. Sprengel, R. Schoepfer et al., “Heteromeric NMDA receptors: molecular and functional distinction of subtypes,” Science, vol. 256, no. 5060, pp. 1217–1221, 1992.
[30]  T. Ishii, K. Moriyoshi, H. Sugihara et al., “Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits,” Journal of Biological Chemistry, vol. 268, no. 4, pp. 2836–2843, 1993.
[31]  S. L. C. Brothwell, J. L. Barber, D. T. Monaghan, D. E. Jane, A. J. Gibb, and S. Jones, “NR2B- and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones,” Journal of Physiology, vol. 586, no. 3, pp. 739–750, 2008.
[32]  B. Sommer, M. K?hler, R. Sprengel, and P. H. Seeburg, “RNA editing in brain controls a determinant of ion flow in glutamate-gated channels,” Cell, vol. 67, no. 1, pp. 11–19, 1991.
[33]  Y. Yao and M. L. Mayer, “Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A,” Journal of Neuroscience, vol. 26, no. 17, pp. 4559–4566, 2006.
[34]  T. Kuner, L. P. Wollmuth, A. Karlin, P. H. Seeburg, and B. Sakmann, “Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines,” Neuron, vol. 17, no. 2, pp. 343–352, 1996.
[35]  A. I. Sobolevsky, L. Rooney, and L. P. Wollmuth, “Staggering of subunits in NMDAR channels,” Biophysical Journal, vol. 83, no. 6, pp. 3304–3314, 2002.
[36]  A. I. Sobolevsky, C. Beck, and L. P. Wollmuth, “Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating,” Neuron, vol. 33, no. 1, pp. 75–85, 2002.
[37]  A. Wada, H. Takahashi, S. A. Lipton, and H.-S. V. Chen, “NR3A modulates the outer vestibule of the “NMDA” receptor channel,” Journal of Neuroscience, vol. 26, no. 51, pp. 13156–13166, 2006.
[38]  Y. F. Sasaki, T. Rothe, L. S. Premkumar et al., “Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons,” Journal of Neurophysiology, vol. 87, no. 4, pp. 2052–2063, 2002.
[39]  C.-M. Low and K. S.-L. Wee, “New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function,” Molecular Pharmacology, vol. 78, no. 1, pp. 1–11, 2010.
[40]  S. Pachernegg, N. Strutz-Seebohm, and M. Hollmann, “GluN3 subunit-containing NMDA receptors: not just one-trick ponies,” Trends in Neurosciences, vol. 35, no. 4, pp. 240–249, 2012.
[41]  M. A. Henson, A. C. Roberts, I. Pérez-Ota?o, and B. D. Philpot, “Influence of the NR3A subunit on NMDA receptor functions,” Progress in Neurobiology, vol. 91, no. 1, pp. 23–37, 2010.
[42]  K. Matsuda, Y. Kamiya, S. Matsuda, and M. Yuzaki, “Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability,” Molecular Brain Research, vol. 100, no. 1-2, pp. 43–52, 2002.
[43]  H. Furukawa, S. K. Singh, R. Mancusso, and E. Gouaux, “Subunit arrangement and function in NMDA receptors,” Nature, vol. 438, no. 7065, pp. 185–192, 2005.
[44]  S. Schorge and D. Colquhoun, “Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits,” Journal of Neuroscience, vol. 23, no. 4, pp. 1151–1158, 2003.
[45]  P. T. Atlason, M. L. Garside, E. Meddows, P. Whiting, and R. A. J. McIlhinney, “N-methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor,” Journal of Biological Chemistry, vol. 282, no. 35, pp. 25299–25307, 2007.
[46]  R. A. Al-Hallaq, B. R. Jarabek, Z. Fu, S. Vicini, B. B. Wolfe, and R. P. Yasuda, “Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits,” Molecular Pharmacology, vol. 62, no. 5, pp. 1119–1127, 2002.
[47]  T. Schüler, I. Mesic, C. Madry, I. Bartholoma, and B. Laube, “Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly,” Journal of Biological Chemistry, vol. 283, no. 1, pp. 37–46, 2008.
[48]  M. H. Ulbrich and E. Y. Isacoff, “Rules of engagement for NMDA receptor subunits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14163–14168, 2008.
[49]  J. E. Chatterton, M. Awobuluyi, L. S. Premkumar et al., “Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits,” Nature, vol. 415, no. 6873, pp. 793–798, 2002.
[50]  N. A. Cavara, A. Orth, and M. Hollmann, “Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors,” BMC Neuroscience, vol. 10, article 32, 2009.
[51]  P. Paoletti, A. M. Vergnano, B. Barbour, and M. Casado, “Zinc at glutamatergic synapses,” Neuroscience, vol. 158, no. 1, pp. 126–136, 2009.
[52]  C. Madry, H. Betz, J. R. P. Geiger, and B. Laube, “Supralinear potentiation of NR1/NR3A excitatory glycine receptors by Zn2+ and NR1 antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12563–12568, 2008.
[53]  R. A. J. McIlhinney, E. Molnár, J. R. Atack, and P. J. Whiting, “Cell surface expression of the human N-methyl-D-aspartate receptor subunit 1a requires the co-expression of the NR2A subunit in transfected cells,” Neuroscience, vol. 70, no. 4, pp. 989–997, 1996.
[54]  V. A. Alvarez, D. A. Ridenour, and B. L. Sabatini, “Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability,” Journal of Neuroscience, vol. 27, no. 28, pp. 7365–7376, 2007.
[55]  H.-K. Wong, X.-B. Liu, M. F. Matos et al., “Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain,” Journal of Comparative Neurology, vol. 450, no. 4, pp. 303–317, 2002.
[56]  L. Sun, F. L. Margolis, M. T. Shipley, and M. S. Lidow, “Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain,” FEBS Letters, vol. 441, no. 3, pp. 392–396, 1998.
[57]  D. J. Goebel and M. S. Poosch, “NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1(Com), NR2A, NR2B, NR2C, NR2D and NR3A,” Molecular Brain Research, vol. 69, no. 2, pp. 164–170, 1999.
[58]  H. T. Mueller and J. H. Meador-Woodruff, “Distribution of the NMDA receptor NR3A subunit in the adult pig-tail macaque brain,” Journal of Chemical Neuroanatomy, vol. 29, no. 3, pp. 157–172, 2005.
[59]  M. Eriksson, A. Nilsson, S. Froelich-Fabre et al., “Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A,” Neuroscience Letters, vol. 321, no. 3, pp. 177–181, 2002.
[60]  N. J. Sucher, K. Kohler, L. Tenneti et al., “N-methyl-D-aspartate receptor subunit NR3A in the retina: developmental expression, cellular localization, and functional aspects,” Investigative Ophthalmology and Visual Science, vol. 44, no. 10, pp. 4451–4456, 2003.
[61]  R. S. Larsen, R. J. Corlew, M. A. Henson et al., “NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity,” Nature Neuroscience, vol. 14, no. 3, pp. 338–344, 2011.
[62]  D. W. McClymont, J. Harris, and I. R. Mellor, “Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors,” European Journal of Pharmacology, vol. 686, no. 1–3, pp. 22–31, 2012.
[63]  K. M. On and N. J. Sucher, “Molecular interaction of NMDA receptor subunit NR3A with protein phosphatase 2A,” NeuroReport, vol. 15, no. 9, pp. 1447–1450, 2004.
[64]  S. F. Chan and N. J. Sucher, “An NMDA receptor signaling complex with protein phosphatase 2A,” Journal of Neuroscience, vol. 21, no. 20, pp. 7985–7992, 2001.
[65]  G. N. Barnes, J. T. Slevin, and T. C. Vanaman, “Rat brain protein phosphatase 2A: an enzyme that may regulate autophosphorylated protein kinases,” Journal of Neurochemistry, vol. 64, no. 1, pp. 340–353, 1995.
[66]  M. Eriksson, H. Samuelsson, S. Bj?rklund et al., “MAP1B binds to the NMDA receptor subunit NR3A and affects NR3A protein concentrations,” Neuroscience Letters, vol. 475, no. 1, pp. 33–37, 2010.
[67]  M. Eriksson, H. Samuelsson, E.-B. Samuelsson et al., “The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain,” Biochemical and Biophysical Research Communications, vol. 361, no. 1, pp. 127–132, 2007.
[68]  S. Halpain, A. Hipolito, and L. Saffer, “Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin,” Journal of Neuroscience, vol. 18, no. 23, pp. 9835–9844, 1998.
[69]  Y. Jiang, V. T. Puliyappadamba, L. Zhang et al., “A novel mechanism of cell growth regulation by Cell Cycle and Apoptosis Regulatory Protein (CARP)-1,” Journal of Molecular Signaling, vol. 5, article 7, 2010.
[70]  M. Eriksson, A. Nilsson, H. Samuelsson et al., “On the role of NR3A in human NMDA receptors,” Physiology and Behavior, vol. 92, no. 1-2, pp. 54–59, 2007.
[71]  A. M. Arsham and T. P. Neufeld, “Thinking globally and acting locally with TOR,” Current Opinion in Cell Biology, vol. 18, no. 6, pp. 589–597, 2006.
[72]  M. F. Bear, G. D?len, E. Osterweil, and N. Nagarajan, “Fragile X: translation in action,” Neuropsychopharmacology, vol. 33, no. 1, pp. 84–87, 2008.
[73]  N. J. Sucher, E. Yu, S. F. Chan et al., “Association of the small GTPase Rheb with the NMDA receptor subunit NR3A,” NeuroSignals, vol. 18, no. 4, pp. 203–209, 2011.
[74]  U. Narayanan, V. Nalavadi, M. Nakamoto et al., “FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A,” Journal of Neuroscience, vol. 27, no. 52, pp. 14349–14357, 2007.
[75]  U. Narayanan, V. Nalavadi, M. Nakamoto et al., “S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade,” Journal of Biological Chemistry, vol. 283, no. 27, pp. 18478–18482, 2008.
[76]  D. Chowdhury, S. Marco, I. M. Brooks et al., “Tyrosine Phosphorylation Regulates the Endocytosis and Surface Expression of GluN3A-Containing NMDA Receptors,” Journal of Neuroscience, vol. 33, no. 9, pp. 4151–4164, 2013.
[77]  B. Qualmann, J. Roos, P. J. DiGregorio, and R. B. Kelly, “Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein,” Molecular Biology of the Cell, vol. 10, no. 2, pp. 501–513, 1999.
[78]  F. Simpson, N. K. Hussain, B. Qualmann et al., “SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation,” Nature Cell Biology, vol. 1, no. 2, pp. 119–124, 1999.
[79]  M. M. Kessels and B. Qualmann, “Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization,” Journal of Biological Chemistry, vol. 281, no. 19, pp. 13285–13299, 2006.
[80]  A. Halbach, M. M?rgelin, M. Baumgarten, M. Milbrandt, M. Paulsson, and M. Plomann, “PACSIN 1 forms tetramers via its N-terminal F-BAR domain,” FEBS Journal, vol. 274, no. 3, pp. 773–782, 2007.
[81]  S. Schael, J. Nuechel, S. Mueller et al., “Casein kinase 2 phosphorylation of PACSIN 1 regulates neuronal spine formation,” Journal of Biological Chemistry, 2013.
[82]  D. S. Macdonald, M. Weerapura, M. A. Beazely et al., “Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires Gαq, protein kinase C, and activation of Src,” Journal of Neuroscience, vol. 25, no. 49, pp. 11374–11384, 2005.
[83]  T. Nakazawa, S. Komai, T. Tezuka et al., “Characterization of Fyn-mediated tyrosine phosphorylation sites on GluRε2 (NR2B) subunit of the N-methyl-D-aspartate receptor,” Journal of Biological Chemistry, vol. 276, no. 1, pp. 693–699, 2001.
[84]  P. Caroni, F. Donato, and D. Muller, “Structural plasticity upon learning: regulation and functions,” Nature Reviews Neuroscience, vol. 13, no. 7, pp. 478–490, 2012.
[85]  M. Maletic-Savatic, R. Malinow, and K. Svoboda, “Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity,” Science, vol. 283, no. 5409, pp. 1923–1927, 1999.
[86]  A. Holtmaat and K. Svoboda, “Experience-dependent structural synaptic plasticity in the mammalian brain,” Nature Reviews Neuroscience, vol. 10, no. 9, pp. 647–658, 2009.
[87]  M. de Roo, P. Klauser, and D. Muller, “LTP promotes a selective long-term stabilization and clustering of dendritic spines,” PLoS Biology, vol. 6, no. 9, article e219, 2008.
[88]  A. T. U. Schaefers and G. Teuchert-Noodt, “Developmental neuroplasticity and the origin of neurodegenerative diseases,” The World Journal of Biological Psychiatry, 2013.
[89]  H. T. Mueller and J. H. Meador-Woodruff, “NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder,” Schizophrenia Research, vol. 71, no. 2-3, pp. 361–370, 2004.
[90]  M. A. Snyder and W. J. Gao, “NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia,” Frontiers in Cellular Neuroscience, vol. 7, article 31, 2013.
[91]  D. C. Mathews, I. D. Henter, and C. A. Zarate Jr., “Targeting the glutamatergic system to treat major depressive disorder,” Drugs, vol. 72, no. 10, pp. 1313–1333, 2012.
[92]  R. A. C. Roos, “Huntington's disease: a clinical review,” Orphanet Journal of Rare Diseases, vol. 5, no. 1, article 40, 2010.
[93]  M. DiFiglia, M. Sena-Esteves, K. Chase et al., “Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17204–17209, 2007.
[94]  M. DiFiglia, E. Sapp, K. O. Chase et al., “Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain,” Science, vol. 277, no. 5334, pp. 1990–1993, 1997.
[95]  G. Schaffar, P. Breuer, R. Boteva et al., “Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation,” Molecular Cell, vol. 15, no. 1, pp. 95–105, 2004.
[96]  J.-Y. Li, M. Plomann, and P. Brundin, “Huntington's disease: a synaptopathy?” Trends in Molecular Medicine, vol. 9, no. 10, pp. 414–420, 2003.
[97]  S. Marco, A. Giralt, M. M. Petrovic, et al., “Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models,” Nature Medicine, vol. 19, pp. 1030–1038, 2013.
[98]  M. A. Ungless, J. L. Whistler, R. C. Malenka, and A. Bonci, “Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons,” Nature, vol. 411, no. 6837, pp. 583–587, 2001.
[99]  B. Schilstr?m, R. Yaka, E. Argilli et al., “Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors,” Journal of Neuroscience, vol. 26, no. 33, pp. 8549–8558, 2006.
[100]  M. Mameli, C. Bellone, M. T. C. Brown, and C. Lüscher, “Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area,” Nature Neuroscience, vol. 14, no. 4, pp. 414–416, 2011.
[101]  C. Bellone and C. Lüscher, “Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression,” Nature Neuroscience, vol. 9, no. 5, pp. 636–641, 2006.
[102]  T. Yuan, M. Mameli, E. C. O’Connor et al., “Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors,” Neuron, vol. 80, no. 4, pp. 1025–1038, 2013.
[103]  N. Nakanishi, S. Tu, Y. Shin et al., “Neuroprotection by the NR3A subunit of the NMDA receptor,” Journal of Neuroscience, vol. 29, no. 16, pp. 5260–5265, 2009.
[104]  R. Martínez-Turrillas, E. Puerta, D. Chowdhury et al., “The NMDA receptor subunit GluN3A protects against 3-nitroproprionic-induced striatal lesions via inhibition of calpain activation,” Neurobiology of Disease, vol. 48, no. 3, pp. 290–298, 2012.
[105]  Y. Terasaki, T. Sasaki, Y. Yagita et al., “Activation of NR2A receptors induces ischemic tolerance through CREB signaling,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 8, pp. 1441–1449, 2010.
[106]  Y. Liu, P. W. Tak, M. Aarts et al., “NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo,” Journal of Neuroscience, vol. 27, no. 11, pp. 2846–2857, 2007.
[107]  H. Wang, H. Yan, S. Zhang, X. Wei, J. Zheng, and J. Lee, “GluN3A subunit exerts a neuroprotective effect in brain ischemia and hypoxia process,” ASN Neuro, vol. 5, no. 4, Article ID e00120, 2013.
[108]  A. Derouiche, E. Anlauf, G. Aumann, B. Mühlst?dt, and M. Lavialle, “Anatomical aspects of glia-synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment,” Journal of Physiology Paris, vol. 96, no. 3-4, pp. 177–182, 2002.
[109]  M. Lavialle, G. Aumann, E. Anlauf, F. Pr?ls, M. Arpin, and A. Derouiche, “Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 31, pp. 12915–12919, 2011.
[110]  W. Sun, E. McConnell, J.-F. Pare et al., “Glutamate-dependent neuroglial calcium signaling differs between young and adult brain,” Science, vol. 339, no. 6116, pp. 197–200, 2013.
[111]  A. Panatier, J. Vallée, M. Haber, K. K. Murai, J.-C. Lacaille, and R. Robitaille, “Astrocytes are endogenous regulators of basal transmission at central synapses,” Cell, vol. 146, no. 5, pp. 785–798, 2011.
[112]  J. T. Porter and K. D. McCarthy, “Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals,” Journal of Neuroscience, vol. 16, no. 16, pp. 5073–5081, 1996.
[113]  P. Bezzi, V. Gundersen, J. L. Galbete et al., “Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate,” Nature Neuroscience, vol. 7, no. 6, pp. 613–620, 2004.
[114]  J.-P. Mothet, L. Pollegioni, G. Ouanounou, M. Martineau, P. Fossier, and G. Baux, “Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5606–5611, 2005.
[115]  A. Araque, V. Parpura, R. P. Sanzgiri, and P. G. Haydon, “Tripartite synapses: glia, the unacknowledged partner,” Trends in Neurosciences, vol. 22, no. 5, pp. 208–215, 1999.
[116]  E. Brand-Schieber and P. Werner, “AMPA/kainate receptors in mouse spinal cord cell-specific display of receptor subunits by oligodendrocytes and astrocytes and at the nodes of Ranvier,” Glia, vol. 42, no. 1, pp. 12–24, 2003.
[117]  R. Káradóttir, P. Cavelier, L. H. Bergersen, and D. Attwell, “NMDA receptors are expressed in oligodendrocytes and activated in ischaemia,” Nature, vol. 438, no. 7071, pp. 1162–1166, 2005.
[118]  U. Lalo, Y. Pankratov, F. Kirchhoff, R. A. North, and A. Verkhratsky, “NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes,” Journal of Neuroscience, vol. 26, no. 10, pp. 2673–2683, 2006.
[119]  C. Agulhon, J. Petravicz, A. B. McMullen et al., “What is the role of astrocyte calcium in neurophysiology?” Neuron, vol. 59, no. 6, pp. 932–946, 2008.
[120]  O. Palygin, U. Lalo, and Y. Pankratov, “Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes,” British Journal of Pharmacology, vol. 163, no. 8, pp. 1755–1766, 2011.
[121]  M. Haber and K. K. Murai, “Reshaping neuron-glial communication at hippocampal synapses,” Neuron Glia Biology, vol. 2, no. 1, pp. 59–66, 2006.
[122]  H. Nishida and S. Okabe, “Direct astrocytic contacts regulate local maturation of dendritic spines,” Journal of Neuroscience, vol. 27, no. 2, pp. 331–340, 2007.
[123]  M. W. Nestor, L.-P. Mok, M. E. Tulapurkar, and S. M. Thompson, “Plasticity of neuron-glial interactions mediated by astrocytic EphARs,” Journal of Neuroscience, vol. 27, no. 47, pp. 12817–12828, 2007.
[124]  D. Verbich, G. A. Prenosil, P. K.-Y. Chang, K. K. Murai, and R. A. Mckinney, “Glial glutamate transport modulates dendritic spine head protrusions in the hippocampus,” Glia, vol. 60, no. 7, pp. 1067–1077, 2012.
[125]  I. Lushnikova, G. Skibo, D. Muller, and I. Nikonenko, “Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus,” Hippocampus, vol. 19, no. 8, pp. 753–762, 2009.
[126]  J. J. Lippman, T. Lordkipanidze, M. E. Buell, S. O. Yoon, and A. Dunaevsky, “Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis,” Glia, vol. 56, no. 13, pp. 1463–1477, 2008.
[127]  D. Kalman, S. N. Gomperts, S. Hardy, M. Kitamura, and J. M. Bishop, “Ras family GTPases control growth of astrocyte processes,” Molecular Biology of the Cell, vol. 10, no. 5, pp. 1665–1683, 1999.
[128]  Z. Xie, D. P. Srivastava, H. Photowala et al., “Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines,” Neuron, vol. 56, no. 4, pp. 640–656, 2007.
[129]  A. Tashiro and R. Yuste, “Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility,” Molecular and Cellular Neuroscience, vol. 26, no. 3, pp. 429–440, 2004.
[130]  M. Plomann, R. Lange, G. Vopper et al., “PACSIN, a brain protein that is upregulated upon differentiation into neuronal cells,” European Journal of Biochemistry, vol. 256, no. 1, pp. 201–211, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133