Nitric oxide (NO) is an important signaling molecule involved in nociceptive transmission. It can induce analgesic and hyperalgesic effects in the central nervous system. In this study, patch-clamp recording was used to investigate the effect of NO on neuronal excitability in substantia gelatinosa (SG) neurons of the spinal cord. Different concentrations of sodium nitroprusside (SNP; NO donor) induced a dual effect on the excitability of neuronal membrane: 1?mM of SNP evoked membrane hyperpolarization and an outward current, whereas 10?μM induced depolarization of the membrane and an inward current. These effects were prevented by hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO) (NO scavengers), phenyl N-tert-butylnitrone (PBN; nonspecific reactive oxygen species scavenger), and through inhibition of soluble guanylyl cyclase (sGC). Pretreatment with n-ethylmaleimide (NEM; thiol-alkylating agent) also decreased effects of both 1?mM and 10?μM SNP, suggesting that these responses were mediated by direct S-nitrosylation. Charybdotoxin (CTX) and tetraethylammonium (TEA) (large-conductance Ca2+-activated K+ channel blockers) and glybenclamide (ATP-sensitive K+ channel blocker) decreased SNP-induced hyperpolarization. La3+ (nonspecific cation channel blocker), but not Cs+ (hyperpolarization-activated K+ channel blocker), blocked SNP-induced membrane depolarization. In conclusion, NO dually affects neuronal excitability in a concentration-dependent manner via modification of various K+ channels. 1. Introduction Nitric oxide (NO) is a pivotal signaling molecule involved in many diverse developmental and physiological processes in the mammalian nervous system [1–3]. NO is biosynthesized from L-arginine by specific neuronal and non-neuronal forms of NO synthase [4, 5]. NO donors as well as endogenously produced NO play a role in many physiological processes, including smooth muscle relaxation, cellular proliferation, apoptosis, neurotransmitter release, and cell differentiation [6]. NO-induced effects are commonly mediated through the following processes: increased cGMP production upon activation of NO-sensitive soluble guanylyl cyclase (sGC), S-nitrosylation, tyrosine nitration, and NO interaction with superoxide ( ) to form peroxynitrite (ONOO?) [1, 7, 8]. Oxidative stress due to reactive oxygen species (ROS) such as , hydrogen peroxide (H2O2), NO, and ONOO? interferes with normal cell function and can cause cell damage. Moreover, ROS is associated with chronic pain, particularly neuropathic and
References
[1]
G. P. Ahern, V. A. Klyachko, and M. B. Jackson, “cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO,” Trends in Neurosciences, vol. 25, no. 10, pp. 510–517, 2002.
[2]
V. Calabrese, C. Mancuso, M. Calvani, E. Rizzarelli, D. A. Butterfield, and A. M. Giuffrida Stella, “Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity,” Nature Reviews Neuroscience, vol. 8, no. 10, pp. 766–775, 2007.
[3]
Y. Cury, G. Picolo, V. P. Gutierrez, and S. H. Ferreira, “Pain and analgesia: the dual effect of nitric oxide in the nociceptive system,” Nitric Oxide, vol. 25, no. 3, pp. 243–254, 2011.
[4]
J. V. Esplugues, “NO as a signalling molecule in the nervous system,” British Journal of Pharmacology, vol. 135, no. 5, pp. 1079–1095, 2002.
[5]
N. Olson and A. Van Der Vliet, “Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease,” Nitric Oxide, vol. 25, no. 2, pp. 125–137, 2011.
[6]
J. W. Denninger and M. A. Marletta, “Guanylate cyclase and the NO/cGMP signaling pathway,” Biochimica et Biophysica Acta, vol. 1411, no. 2-3, pp. 334–350, 1999.
[7]
A. Rudkouskaya, V. Sim, A. A. Shah, P. J. Feustel, D. Jourd'heuil, and A. A. Mongin, “Long-lasting inhibition of presynaptic metabolism and neurotransmitter release by protein S-nitrosylation,” Free Radical Biology & Medicine, vol. 49, no. 5, pp. 757–769, 2010.
[8]
Y. J. Jin, J. Kim, and J. Y. Kwak, “Activation of the cGMP/protein kinase G pathway by nitric oxide can decrease TRPV1 activity in cultured rat dorsal root ganglion neurons,” The Korean Journal of Physiology & Pharmacology, vol. 16, no. 3, pp. 211–217, 2012.
[9]
H. K. Kim, S. K. Park, J.-L. Zhou et al., “Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain,” Pain, vol. 111, no. 1-2, pp. 116–124, 2004.
[10]
H. K. Kim, J. H. Kim, X. Gao et al., “Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain,” Pain, vol. 122, no. 1-2, pp. 53–62, 2006.
[11]
Y. Guan, M. Yaster, S. N. Raja, and Y.-X. Tao, “Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice,” Molecular Pain, vol. 3, article no. 29, 2007.
[12]
M. Tanabe, Y. Nagatani, K. Saitoh, K. Takasu, and H. Ono, “Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice,” Neuropharmacology, vol. 56, no. 3, pp. 702–708, 2009.
[13]
Y.-C. Chu, Y. Guan, J. Skinner, S. N. Raja, R. A. Johns, and Y.-X. Tao, “Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain,” Pain, vol. 119, no. 1–3, pp. 113–123, 2005.
[14]
T. J. Coderre and K. Yashpal, “Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model,” The European Journal of Neuroscience, vol. 6, no. 8, pp. 1328–1334, 1994.
[15]
S. T. Meller, C. P. Cummings, R. J. Traub, and G. F. Gebhart, “The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat,” Neuroscience, vol. 60, no. 2, pp. 367–374, 1994.
[16]
E. Chung, B. Burke, A. J. Bieber, J. C. Doss, Y. Ohgami, and R. M. Quock, “Dynorphin-mediated antinociceptive effects of l-arginine and SIN-1 (an NO donor) in mice,” Brain Research Bulletin, vol. 70, no. 3, pp. 245–250, 2006.
[17]
I. D. G. Duarte, B. B. Lorenzetti, and S. H. Ferreira, “Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway,” European Journal of Pharmacology, vol. 186, no. 2-3, pp. 289–293, 1990.
[18]
T. Kawano, V. Zoga, M. Kimura et al., “Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation,” Molecular Pain, vol. 5, article no. 12, 2009.
[19]
V. M. Bolotina, S. Najibi, J. J. Palacino, P. J. Pagano, and R. A. Cohen, “Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle,” Nature, vol. 368, no. 6474, pp. 850–853, 1994.
[20]
H. Y. Kim, S. J. Kim, J. Kim, S. B. Oh, H. Cho, and S. J. Jung, “Effect of nitric oxide on hyperpolarization-activated current in substantia gelatinosa neurons of rats,” Biochemical and Biophysical Research Communications, vol. 338, no. 3, pp. 1648–1653, 2005.
[21]
Y. W. Yoon, B. Sung, and J. M. Chung, “Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model,” NeuroReport, vol. 9, no. 3, pp. 367–372, 1998.
[22]
H. Y. Kim, J. Wang, Y. Lu, J. M. Chung, and K. Chung, “Superoxide signaling in pain is independent of nitric oxide signaling,” NeuroReport, vol. 20, no. 16, pp. 1424–1428, 2009.
[23]
A. Kawabata, S. Manabe, Y. Manabe, and H. Takagi, “Effect of topical administration of L-arginine on formalin-induced nociception in the mouse: a dual role of peripherally formed NO in pain modulation,” British Journal of Pharmacology, vol. 112, no. 2, pp. 547–550, 1994.
[24]
K. Li and W.-X. Qi, “Effects of multiple intrathecal administration of L-arginine with different doses on formalin-induced nociceptive behavioral responses in rats,” Neuroscience Bulletin, vol. 26, no. 3, pp. 211–218, 2010.
[25]
A. M. Sousa and W. A. Prado, “The dual effect of a nitric oxide donor in nociception,” Brain Research, vol. 897, no. 1-2, pp. 9–19, 2001.
[26]
U. Pehl and H. A. Schmid, “Electrophysiological responses of neurons in the rat spinal cord to nitric oxide,” Neuroscience, vol. 77, no. 2, pp. 563–573, 1997.
[27]
Z. Lacza, E. M. Horváth, E. Pankotai et al., “The novel red-fluorescent probe DAR-4M measures reactive nitrogen species rather than NO,” Journal of Pharmacological and Toxicological Methods, vol. 52, no. 3, pp. 335–340, 2005.
[28]
H. Kojima, N. Nakatsubo, K. Kikuchi et al., “Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins,” Analytical Chemistry, vol. 70, no. 13, pp. 2446–2453, 1998.
[29]
A. Balcerczyk, M. Soszynski, and G. Bartosz, “On the specificity of 4-amino-5-methylamino- , -difluorofluorescein as a probe for nitric oxide,” Free Radical Biology & Medicine, vol. 39, no. 3, pp. 327–335, 2005.
[30]
L. Yu, P. E. Gengaro, M. Niederberger, T. J. Burke, and R. W. Schrier, “Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 5, pp. 1691–1695, 1994.
[31]
L. R. Silveira, L. Pereira-Da-Silva, C. Juel, and Y. Hellsten, “Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions,” Free Radical Biology & Medicine, vol. 35, no. 5, pp. 455–464, 2003.
[32]
C. G. Nichols, “ channels as molecular sensors of cellular metabolism,” Nature, vol. 440, no. 7083, pp. 470–476, 2006.
[33]
O. Behrend, C. Schwark, T. Kunihiro, and M. Strupp, “Cyclic GMP inhibits and shifts the activation curve of the delayed rectifier (IK1) of type I mammalian vestibular hair cells,” NeuroReport, vol. 8, no. 12, pp. 2687–2690, 1997.
[34]
J. Han, N. Kim, E. Kim, W.-K. Ho, and Y. E. Earm, “Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes,” Journal of Biological Chemistry, vol. 276, no. 25, pp. 22140–22147, 2001.
[35]
Q. Sun, G.-G. Xing, H.-Y. Tu, J.-S. Han, and Y. Wan, “Inhibition of hyperpolarization-activated current by ZD7288 suppresses ectopic discharges of injured dorsal root ganglion neurons in a rat model of neuropathic pain,” Brain Research, vol. 1032, no. 1-2, pp. 63–69, 2005.
[36]
T. Miyamoto, A. E. Dublin, M. J. Petrus, and A. Patapoutian, “TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice,” PLoS ONE, vol. 4, no. 10, Article ID e7596, 2009.
[37]
T. Yoshida, R. Inoue, T. Morii et al., “Nitric oxide activates TRP channels by cysteine S-nitrosylation,” Nature Chemical Biology, vol. 2, no. 11, pp. 596–607, 2006.