全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gait Variability and Multiple Sclerosis

DOI: 10.1155/2013/645197

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gait variability, that is, fluctuations in movement during walking, is an indicator of walking function and has been associated with various adverse outcomes such as falls. In this paper, current research concerning gait variability in persons with multiple sclerosis (MS) is discussed. It is well established that persons with MS have greater gait variability compared to age and gender matched controls without MS. The reasons for the increase in gait variability are not completely understood. Evidence indicates that disability level, assistive device use, attentional requirement, and fatigue are related to gait variability in persons with MS. Future research should address the time-evolving structure (i.e., temporal characteristics) of gait variability, the clinical importance of gait variability, and underlying mechanisms that drive gait variability in individuals with MS. 1. Gait Variability When one moves repeatedly, there are slight alterations in each individual movement. Traditionally, this variability in movement was viewed as random noise-providing minimal important information [1, 2]. With the introduction of chaos and complexity theory into the life sciences in the 1990s, this negative view of variability was challenged [3–5]. It is now maintained that movement variability is an important clinical phenomenon [6]. Gait (i.e., walking) is a complicated process involving coordination of multiple systems within the body (e.g., central nervous, musculoskeletal, and cardiovascular system) [7]. To walk, a person’s nervous system must send signals to control a large number of muscles while simultaneously processing sensory information in order to monitor and refine movements, all while maintaining an upright stance [7]. Given the multitude of muscles, and neural processes involved, gait variability likely arises from a combination of factors [8]. There is increasing evidence that gait variability is a quantifiable indicator of walking function [1, 2, 9]. In the past, gait variability was viewed as experimental artifact that should be filtered out to reveal average behavior [10]. However, more recently, evidence has demonstrated meaningful characteristics of gait variability, associated with neural control of walking [1, 2, 9, 10]. Increases in gait variability have been observed in individuals with advanced age [11–14] as well as various neurologically impaired populations, including spinal cord injury [15] and neurological conditions, such as Parkinson’s disease [16], dementia [17], and multiple sclerosis [18]. Gait variability has further been

References

[1]  J. M. Hausdorff, “Gait variability: methods, modeling and meaning,” Journal of NeuroEngineering and Rehabilitation, vol. 2, article 19, 2005.
[2]  T. Chau, S. Young, and S. Redekop, “Managing variability in the summary and comparison of gait data,” Journal of NeuroEngineering and Rehabilitation, vol. 2, article 22, 2005.
[3]  K. M. Newell and D. M. Corcos, Variability and Motor Control, Human Kinetics, Champaign, Ill, USA, 1993.
[4]  J. M. Hausdorff, C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger, “Is walking a random walk? Evidence for long-range correlations in stride interval of human gait,” Journal of Applied Physiology, vol. 78, no. 1, pp. 349–358, 1995.
[5]  K. M. Newell, K. M. Deutsch, J. J. Sosnoff, and G. Mayer-Kress, “VAriability in motor output as noise: a default and erroneous proposition?” in Variability in the Movement System: A Multi-Disciplinary Perspective, K. Davids, S. Bennett, and K. M. Newell, Eds., pp. 3–24, Human Kinetics, Champaign, Ill, USA, 2005.
[6]  K. M. Newell, D. E. Vaillancourt, and J. J. Sosnoff, “Aging, complexity and motor performance,” in Handbook of Psychology of Aging, J. E. Birren and W. Schaie, Eds., pp. 163–181, Elsevier Academic Press, Burlington, Mass, USA, 6th edition, 2006.
[7]  D. A. Winter, Biomechanics and Motor Control of Human Movement, John Wiley & Sons, Hoboken, NJ, USA, 4th edition, 2009.
[8]  M. L. Callisaya, L. Blizzard, J. L. McGinley, M. D. Schmidt, and V. K. Srikanth, “Sensorimotor factors affecting gait variability in older people-a population-based study,” Journals of Gerontology—Series A, vol. 65, no. 4, pp. 386–392, 2010.
[9]  N. Stergiou, R. Harbourne, and J. Cavanaugh, “Optimal movement variability: a new theoretical perspective for neurologic physical therapy,” Journal of Neurologic Physical Therapy, vol. 30, no. 3, pp. 120–129, 2006.
[10]  S. Lord, T. Howe, J. Greenland, L. Simpson, and L. Rochester, “Gait variability in older adults: a structured review of testing protocol and clinimetric properties,” Gait and Posture, vol. 34, no. 4, pp. 443–450, 2011.
[11]  S. Shin, R. J. Valentine, E. M. Evans, and J. J. Sosnoff, “Lower extremity muscle quality and gait variability in older adults,” Age and Ageing, vol. 41, pp. 595–599, 2012.
[12]  M. L. Callisaya, L. Blizzard, M. D. Schmidt et al., “Gait, gait variability and the risk of multiple incident falls in older people: a population-based study,” Age and Ageing, vol. 40, no. 4, pp. 481–487, 2011.
[13]  J. S. Brach, J. E. Berlin, J. M. VanSwearingen, A. B. Newman, and S. A. Studenski, “Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed,” Journal of NeuroEngineering and Rehabilitation, vol. 2, 2005.
[14]  J. M. Hausdorff, D. A. Rios, and H. K. Edelberg, “Gait variability and fall risk in community-living older adults: a 1-year prospective study,” Archives of Physical Medicine and Rehabilitation, vol. 82, no. 8, pp. 1050–1056, 2001.
[15]  K. V. Day, S. A. Kautz, S. S. Wu, S. P. Suter, and A. L. Behrman, “Foot placement variability as a walking balance mechanism post-spinal cord injury,” Clinical Biomechanics, vol. 27, no. 2, pp. 145–150, 2012.
[16]  S. S. Paul, C. Sherrington, V. S. C. Fung, and C. G. Canning, “Motor and cognitive impairments in parkinson disease: relationships with specific balance and mobility tasks,” Neurorehabilitation and Neural Repair, vol. 27, no. 1, pp. 63–71, 2013.
[17]  M. Jamour, C. Becker, M. Synofzik, and W. Maetzler, “Gait changes as an early indicator of dementia,” Zeitschrift für Gerontologie und Geriatrie, vol. 45, no. 1, pp. 40–44, 2012.
[18]  S. J. Crenshaw, T. D. Royer, J. G. Richards, and D. J. Hudson, “Gait variability in people with multiple sclerosis,” Multiple Sclerosis, vol. 12, no. 5, pp. 613–619, 2006.
[19]  N. Stergiou and L. M. Decker, “HUman movement variability, nonlinear dynamics, and pathology: is there a connection?” Human Movement Science, vol. 30, no. 5, pp. 869–888, 2011.
[20]  S. M. O’Connor, H. Z. Xu, and A. D. Kuo, “Energetic cost of walking with increased step variability,” Gait and Posture, vol. 36, no. 1, pp. 102–107, 2012.
[21]  S. Beer, F. Khan, and J. Kesselring, “Rehabilitation interventions in multiple sclerosis: an overview,” Journal of Neurology, vol. 259, no. 9, pp. 1994–2008, 2012.
[22]  J. Kesselring, “Evidence-based medicine and multiple sclerosis: figures and stories,” Neuroepidemiology, vol. 35, no. 2, article 100, 2010.
[23]  J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, “Multiple sclerosis,” The New England Journal of Medicine, vol. 343, no. 13, pp. 938–952, 2000.
[24]  J. F. Kurtzke, “Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS),” Neurology, vol. 33, no. 11, pp. 1444–1452, 1983.
[25]  N. G. LaRocca, “Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners,” Patient, vol. 4, no. 3, pp. 189–201, 2011.
[26]  D. Gijbels, U. Dalgas, A. Romberg et al., “Which walking capacity tests to use in multiple sclerosis? A multicentre study providing the basis for a core set,” Multiple Sclerosis, vol. 18, no. 3, pp. 364–371, 2012.
[27]  J. J. Sosnoff, M. Weikert, D. Dlugonski, D. C. Smith, and R. W. Motl, “Quantifying gait impairment in multiple sclerosis using GAITRite technology,” Gait and Posture, vol. 34, no. 1, pp. 145–147, 2011.
[28]  U. Givon, G. Zeilig, and A. Achiron, “Gait analysis in multiple sclerosis: characterization of temporal-spatial parameters using GAITRite functional ambulation system,” Gait and Posture, vol. 29, no. 1, pp. 138–142, 2009.
[29]  C. L. Martin, B. A. Phillips, T. J. Kilpatrick et al., “Gait and balance impairment in early multiple sclerosis in the absence of clinical disability,” Multiple Sclerosis, vol. 12, no. 5, pp. 620–628, 2006.
[30]  M. G. Benedetti, R. Piperno, L. Simoncini, P. Bonato, A. Tonini, and S. Giannini', “Gait abnormalities in minimally impaired multiple sclerosis patients,” Multiple Sclerosis, vol. 5, no. 5, pp. 363–368, 1999.
[31]  J. G. Remelius, S. L. Jones, J. D. House et al., “Gait impairments in persons with multiple sclerosis across preferred and fixed walking speeds,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 9, pp. 1637–1642, 2012.
[32]  R. I. Spain, R. J. St. George, A. Salarian et al., “Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed,” Gait and Posture, vol. 35, no. 4, pp. 573–578, 2012.
[33]  R. W. Motl, E. M. Snook, and S. Agiovlasitis, “DOes an accelerometer accurately measure steps taken under controlled conditions in adults with mild multiple sclerosis?” Disability and Health Journal, vol. 4, no. 1, pp. 52–57, 2011.
[34]  R. W. Motl, D. Dlugonski, Y. Suh, M. Weikert, B. Fernhall, and M. Goldman, “Accelerometry and its association with objective markers of walking limitations in ambulatory adults with multiple sclerosis,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 12, pp. 1942–1947, 2010.
[35]  R. W. Motl, J. J. Sosnoff, D. Dlugonski, Y. Suh, and M. Goldman, “DOes a waist-worn accelerometer capture intra- and inter-person variation in walking behavior among persons with multiple sclerosis?” Medical Engineering and Physics, vol. 32, no. 10, pp. 1224–1228, 2010.
[36]  J. J. Sosnoff, M. D. Goldman, and R. W. Motl, “Real-life walking impairment in multiple sclerosis: preliminary comparison of four methods for processing accelerometry data,” Multiple Sclerosis, vol. 16, no. 7, pp. 868–877, 2010.
[37]  M. Kaufman, D. Moyer, and J. Norton, “The significant change for the Timed 25-Foot Walk in the multiple sclerosis functional composite,” Multiple Sclerosis, vol. 6, no. 4, pp. 286–290, 2000.
[38]  M. Flegel, K. Knox, and D. Nickel, “Step-length variability in minimally disabled women with multiple sclerosis or clinically isolated syndrome,” International Journal of MS Care, vol. 14, no. 1, pp. 26–30, 2012.
[39]  M. J. Socie, R. W. Motl, J. H. Pula, B. M. Sandroff, and J. J. Sosnoff, “Gait variability and disability in multiple sclerosis,” Gait and Posture, 2012.
[40]  J. P. Kaipust, J. M. Huisinga, M. Filipi, and N. Stergiou, “Gait variability measures reveal differences between multiple sclerosis patients and healthy controls,” Motor Controller, vol. 16, no. 2, pp. 229–244, 2012.
[41]  E. Al-Yahya, H. Dawes, L. Smith, A. Dennis, K. Howells, and J. Cockburn, “Cognitive motor interference while walking: a systematic review and meta-analysis,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 3, pp. 715–728, 2011.
[42]  R. Moe-Nilssen, M. K. Aaslund, C. Hodt-Billington, and J. L. Helbostad, “Gait variability measures may represent different constructs,” Gait and Posture, vol. 32, no. 1, pp. 98–101, 2010.
[43]  M. J. Socie, M. K. Boes, R. W. Motl, and J. J. Sosnoff, “Monitoring spatiotemporal gait parameters during the 6-minute walk in people with multiple sclerosis,” International Journal of MS Care, vol. 13, no. S3, 2011.
[44]  R. Staszkiewicz, W. Chwala, W. Forczek, and J. Laska, “Three-dimensional analysis of the pelvic and hip mobility during gait on a treadmill and on the ground,” Acta of Bioengineering and Biomechanics, vol. 14, no. 2, pp. 83–89, 2012.
[45]  P. E. Roos and J. B. Dingwell, “Influence of simulated neuromuscular noise on movement variability and fall risk in a 3D dynamic walking model,” Journal of Biomechanics, vol. 43, no. 15, pp. 2929–2935, 2010.
[46]  R. Kail, “Speed of information processing in patients with multiple sclerosis,” Journal of Clinical and Experimental Neuropsychology, vol. 20, no. 1, pp. 98–106, 1998.
[47]  J. J. Sosnoff and K. M. Newell, “Aging and motor variability: a test of the neural noise hypothesis,” Experimental Aging Research, vol. 37, no. 4, pp. 377–397, 2011.
[48]  J. M. Huisinga, M. L. Filipi, K. K. Schmid, and N. Stergiou, “IS there a relationship between fatigue questionnaires and gait mechanics in persons with multiple sclerosis?” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 10, pp. 1594–1601, 2011.
[49]  M. E. Morris, C. Cantwell, L. Vowels, and K. Dodd, “Changes in gait and fatigue from morning to afternoon in people with multiple sclerosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 3, pp. 361–365, 2002.
[50]  P. Thoumie, D. Lamotte, S. Cantalloube, M. Faucher, and G. Amarenco, “Motor determinants of gait in 100 ambulatory patients with multiple sclerosis,” Multiple Sclerosis, vol. 11, no. 4, pp. 485–491, 2005.
[51]  T. Broekmans, D. Gijbels, B. O. Eijnde et al., “The relationship between upper leg muscle strength and walking capacity in persons with multiple sclerosis,” Multiple Sclerosis, vol. 19, no. 1, pp. 112–119, 2013.
[52]  J. J. Sosnoff, E. Gappmaier, A. Frame, and R. W. Motl, “Influence of spasticity on mobility and balance in persons with multiple sclerosis,” Journal of Neurologic Physical Therapy, vol. 35, no. 3, pp. 129–132, 2011.
[53]  S. Balantrapu, B. M. Sandroff, J. J. Sosnoff, and R. W. Motl, “Perceived impact of spasticity is associated with spatial and temporal parameters of gait in multiple sclerosis,” ISRN Neurology, vol. 2012, Article ID 675431, 6 pages, 2012.
[54]  R. Schniepp, M. Wuehr, M. Neuhaeusser et al., “Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure,” Movement Disorders, vol. 27, no. 1, pp. 125–131, 2012.
[55]  F. Hamilton, L. Rochester, L. Paul, D. Rafferty, C. P. O'Leary, and J. J. Evans, “Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis,” Multiple Sclerosis, vol. 15, no. 10, pp. 1215–1227, 2009.
[56]  M. J. Socie, B. M. Sandroff, J. H. Pula, E. T. Hsiao-Wecksler, R. W. Motl, and J. J. Sosnoff, “Footfall placement variability and falls in multiple sclerosis,” Annals of Biomedical Engineering, 2012.
[57]  R. W. Motl, Y. Suh, D. Dlugonski et al., “Oxygen cost of treadmill and over-ground walking in mildly disabled persons with multiple sclerosis,” Neurological Sciences, vol. 32, no. 2, pp. 255–262, 2011.
[58]  R. W. Motl, D. Dlugonski, Y. Suh et al., “Multiple Sclerosis Walking Scale-12 and oxygen cost of walking,” Gait and Posture, vol. 31, no. 4, pp. 506–510, 2010.
[59]  R. Olgiati, J.-M. Burgunder, and M. Mumenthaler, “Increased energy cost of walking in multiple sclerosis: effect of spasticity, ataxia, and weakness,” Archives of Physical Medicine and Rehabilitation, vol. 69, no. 10, pp. 846–849, 1988.
[60]  A. Sehle, A. Mündermann, K. Starrost et al., “Objective assessment of motor fatigue in multiple sclerosis using kinematic gait analysis: a pilot study,” Journal of NeuroEngineering and Rehabilitation, vol. 8, no. 1, article 59, 2011.
[61]  J. J. Sosnoff, M. J. Socie, M. K. Boes et al., “Mobility, balance and falls in persons with multiple sclerosis,” PLoS ONE, vol. 6, no. 11, Article ID e28021, 2011.
[62]  M. L. Finlayson, E. W. Peterson, and C. C. Cho, “Risk factors for falling among people aged 45 to 90 with multiple sclerosis,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 9, pp. 1274–1279, 2006.
[63]  M. A. Gianfrancesco, E. W. Triche, J. A. Fawcett, M. P. Labas, T. S. Patterson, and A. C. Lo, “Speed- and cane-related alterations in gait parameters in individuals with multiple sclerosis,” Gait and Posture, vol. 33, no. 1, pp. 140–142, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133