Declines in walking performance are commonly seen when undergoing a concurrent cognitive task in persons with multiple sclerosis (MS). The purpose of this study was to determine the effect of walking direction and simultaneous cognitive task on the spatiotemporal gait parameters in persons with MS compared to healthy controls. Ten persons with MS (Median EDSS, 3.0) and ten healthy controls took part in this pilot study. Participants performed 4 walking trials at their self-selected comfortable pace. These trials included forward walking, forward walking with a cognitive task, backward walking, and backward walking with a cognitive task. Walking performance was indexed with measures of velocity, cadence, and stride length for each testing condition. The MS group walked slower with significantly reduced stride length compared to the control group. The novel observation of this investigation was that walking differences between persons with MS and healthy controls were greater during backward walking, and this effect was further highlighted during backward walking with added cognitive test. This raises the possibility that backward walking tests could be an effective way to examine walking difficulties in individuals with MS with relatively minimal walking impairment. 1. Introduction Walking impairment is very common in persons with MS. Indeed, an estimated 85% of persons with MS report gait impairment as a major limitation [1]. Consequently, tests of walking performance are commonly used for identification and tracking of disease progression [2, 3]. Traditionally, walking impairment is clinically indexed by timed walking performance tests, such as the timed 25-foot walk test. Although performance tests are clinically feasible, there has been concern regarding their sensitivity to walking impairment, and this might unnecessarily delay gait rehabilitation [4]. There are several ways in which walking tests could improve their ability to distinguish between those with and without minimal walking impairment. For instance, there is evidence that the concurrent performance of a cognitive task results in differential worsening of walk performance in those with clinically isolated syndrome [5] and persons with MS [6] compared with healthy controls. Additionally, research in persons with Parkinson’s disease has utilized backwards walking with and without added cognitive tasks as a method to perturb walking function [7, 8]. This pilot study examined the effect of walking direction and simultaneous cognitive task on spatiotemporal gait parameters in persons with MS
References
[1]
N. G. LaRocca, “Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners,” The Patient, vol. 4, no. 3, pp. 189–201, 2011.
[2]
F. Bethoux and S. Bennett, “Evaluating walking in patients with multiple sclerosis,” International Journal of MS Care, vol. 13, no. 1, pp. 4–14, 2011.
[3]
R. W. Motl, “Ambulation and multiple sclerosis,” Physical Medicine & Rehabilitation Clinics of North America, vol. 24, no. 2, pp. 325–336, 2013.
[4]
R. I. Spain, R. J. St. George, A. Salarian et al., “Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed,” Gait and Posture, vol. 35, no. 4, pp. 573–578, 2012.
[5]
A. Kalron, Z. Dvir, and A. Achiron, “Walking while talking—difficulties incurred during the initial stages of multiple sclerosis disease process,” Gait and Posture, vol. 32, no. 3, pp. 332–335, 2010.
[6]
F. Hamilton, L. Rochester, L. Paul, D. Rafferty, C. P. O'Leary, and J. J. Evans, “Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis,” Multiple Sclerosis, vol. 15, no. 10, pp. 1215–1227, 2009.
[7]
M. E. Hackney and G. M. Earhart, “Backward walking in Parkinson's disease,” Movement Disorders, vol. 24, no. 2, pp. 218–223, 2009.
[8]
M. E. Hackney and G. M. Earhart, “The effects of a secondary task on forward and backward walking in Parkinson's disease,” Neurorehabilitation and Neural Repair, vol. 24, no. 1, pp. 97–106, 2010.
[9]
J. B. Boringa, R. H. C. Lazeron, I. E. W. Reuling et al., “The brief repeatable battery of neuropsychological tests: normative values allow application in multiple sclerosis clinical practice,” Multiple Sclerosis, vol. 7, no. 4, pp. 263–267, 2001.
[10]
J. J. Sosnoff, M. K. Boes, B. M. Sandroff, M. J. Socie, J. H. Pula, and R. W. Motl, “Walking and thinking in persons with multiple sclerosis who vary in disability,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 12, pp. 2028–2033, 2011.
[11]
J. J. Sosnoff, M. J. Socie, B. M. Sandroff et al., “Mobility and cognitive correlates of dual task cost of walking in persons with multiple sclerosis,” Disability and Rehabilitation, 2013.
[12]
N. E. Fritz, A. M. Worstell, A. D. Kloos, A. B. Siles, S. E. White, and D. A. Kegelmeyer, “Backward walking measures are sensitive to age-related changes in mobility and balance,” Gait & Posture, vol. 37, no. 4, pp. 593–597, 2013.
[13]
D. Cattaneo and J. Jonsdottir, “Sensory impairments in quiet standing in subjects with multiple sclerosis,” Multiple Sclerosis, vol. 15, no. 1, pp. 59–67, 2009.
[14]
E. M. Frohman, “Multiple sclerosis,” Medical Clinics of North America, vol. 87, no. 4, pp. 867–897, 2003.
[15]
P. N. Matsuda, A. Shumway-Cook, M. A. Ciol, C. H. Bombardier, and D. A. Kartin, “Understanding falls in multiple sclerosis: association of mobility status, concerns about falling, and accumulated impairments,” Physical Therapy, vol. 92, no. 3, pp. 407–415, 2012.
[16]
D. Kahneman, Attention and Effort, Prentice-Hall, Englewood Cliffs, NJ, USA, 1973.
[17]
D. Cattaneo, C. de Nuzzo, T. Fascia, M. Macalli, I. Pisoni, and R. Cardini, “Risks of falls in subjects with multiple sclerosis,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 6, pp. 864–867, 2002.