全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Autoimmune T-Cell Reactivity to Myelin Proteolipids and Glycolipids in Multiple Sclerosis

DOI: 10.1155/2013/151427

Full-Text   Cite this paper   Add to My Lib

Abstract:

Central nervous system (CNS) myelin, the likely major target of autoimmune attack in multiple sclerosis (MS), contains a number of unique components that are potential targets of the attack. Two classes of molecules that are greatly enriched in CNS myelin compared to other parts of the body are certain types of proteolipids and glycolipids. Due to the hydrophobic nature of both of these classes of molecules, they present challenges for use in immunological assays and have therefore been somewhat neglected in studies of T-cell reactivity in MS compared to more soluble molecules such as the myelin basic proteins and the extracellular domain of myelin oligodendrocyte glycoprotein. This review firstly looks at the makeup of CNS myelin, with an emphasis on proteolipids and glycolipids. Next, a retrospective of what is known of T-cell reactivity directed against proteolipids and glycolipids in patients with MS is presented, and the implications of the findings are discussed. Finally, this review considers the question of what would be required to prove a definite role for autoreactivity against proteolipids and glycolipids in the pathogenesis of MS. 1. Central Nervous System Myelin In multiple sclerosis (MS), damage selectively affects the central nervous system (CNS). Irrespective of the event(s) that initiate the damage to the CNS in MS, most studies agree that development of autoreactivity against molecules in the CNS myelin sheath is the most likely mechanism underlying the chronic relapsing and progressive nature of MS. Myelin is a unique lipid-rich specialized membrane found only in the nervous system of vertebrates. It acts as an insulator of the nerve axons and allows nerve impulses to pass rapidly along the axon in a series of jumps (saltatory conduction) from one gap between myelinated segments (node of Ranvier) to another, and also provides trophic support to the axon and maintains the integrity of the axon. Myelin is present in both the CNS, where it is produced by oligodendrocytes, and the peripheral nervous system (PNS), where it is produced by Schwann cells; however, there are distinct differences in the makeup of the myelin in the CNS and PNS (Table 1), and only the CNS myelin is damaged in MS. In addition, Schwann cells only myelinate a single segment of an axon, whereas each individual oligodendrocyte can myelinate numerous separate segments of axons in the CNS (Figure 1(a)). The oligodendrocytes extend membrane sheets which wrap around segments of axon and compact to form the multilamellae structure of compact myelin (Figure 1(b)). Despite

References

[1]  D. A. Kirschner, A. L. Ganser, and D. L. Caspar, “Diffraction studies of molecular organization and membrane interactions in myelin,” in Myelin, P. Morell, Ed., Plenum Press, New York, NY, USA, 2nd edition, 1984.
[2]  J. M. Greer and M. B. Lees, “Myelin proteolipid protein—the first 50 years,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 3, pp. 211–215, 2002.
[3]  J. Y. Garbern, “Pelizaeus-Merzbacher disease: genetic and cellular pathogenesis,” Cellular and Molecular Life Sciences, vol. 64, no. 1, pp. 50–65, 2007.
[4]  K. J. Woodward, “The molecular and cellular defects underlying Pelizaeus-Merzbacher disease,” Expert Reviews in Molecular Medicine, vol. 10, article e14, 2008.
[5]  A. M. Messier and O. A. Bizzozero, “Conserved fatty acid composition of proteolipid protein during brain development and in myelin subfractions,” Neurochemical Research, vol. 25, no. 4, pp. 449–455, 2000.
[6]  T. Weimbs and W. Stoffel, “Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide- bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP,” Biochemistry, vol. 31, no. 49, pp. 12289–12296, 1992.
[7]  D. Boison, H. Bussow, D. D'Urso, H.-W. Muller, and W. Stoffel, “Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths,” Journal of Neuroscience, vol. 15, no. 8, pp. 5502–5513, 1995.
[8]  G. M. Hobson, Z. Huang, K. Sperle, D. L. Stabley, H. G. Marks, and F. Cambi, “A PLP splicing abnormality is associated with an unusual presentation of PMD,” Annals of Neurology, vol. 52, no. 4, pp. 477–488, 2002.
[9]  O. Sp?rkel, T. Uschkureit, H. Büssow, and W. Stoffel, “Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development,” Glia, vol. 37, no. 1, pp. 19–30, 2002.
[10]  E. Wang, N. Dimova, K. Sperle et al., “Deletion of a splicing enhancer disrupts PLP1/DM20 ratio and myelin stability,” Experimental Neurology, vol. 214, no. 2, pp. 322–330, 2008.
[11]  T. I. Gudz, T. E. Schneider, T. A. Haas, and W. B. Macklin, “Myelin proteolipid protein forms a complex with integrins and may participate in integrin receptor signalling in oligodendrocytes,” Journal of Neuroscience, vol. 22, no. 17, pp. 7398–7407, 2002.
[12]  M. J. Miller, C. D. Kangas, and W. B. Macklin, “Neuronal expression of the proteolipid protein gene in the medulla of the mouse,” Journal of Neuroscience Research, vol. 87, no. 13, pp. 2842–2853, 2009.
[13]  T. J. Anderson, P. Montague, N. Nadon, K. A. Nave, and I. R. Griffiths, “Modification of Schwann cell phenotype with Plp transgenes: evidence that the PLP and DM20 isoproteins are targeted to different cellular domains,” Journal of Neuroscience Research, vol. 50, no. 1, pp. 13–22, 1997.
[14]  M. E. Shy, G. Hobson, M. Jain et al., “Schwann cell expression of PLP1 but not DM20 is necessary to prevent neuropathy,” Annals of Neurology, vol. 53, no. 3, pp. 354–365, 2003.
[15]  J. M. Greer and M. P. Pender, “Myelin proteolipid protein: an effective autoantigen and target of autoimmunity in multiple sclerosis,” Journal of Autoimmunity, vol. 31, no. 3, pp. 281–287, 2008.
[16]  J. M. Greer, V. K. Kuchroo, R. A. Sobel, and M. B. Lees, “Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178-191) for SJL mice,” Journal of Immunology, vol. 149, no. 3, pp. 783–788, 1992.
[17]  J. M. Greer, R. A. Sobel, A. Sette, S. Southwood, M. B. Lees, and V. K. Kuchroo, “Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein,” Journal of Immunology, vol. 156, no. 1, pp. 371–379, 1996.
[18]  V. K. Tuohy, Z. Lu, R. A. Sobel, R. A. Laursen, and M. B. Lees, “Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice,” Journal of Immunology, vol. 142, no. 5, pp. 1523–1527, 1989.
[19]  V. K. Tuohy, Z. Lu, R. A. Sobel, R. A. Laursen, and M. B. Lees, “A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis,” Journal of Immunology, vol. 141, no. 4, pp. 1126–1130, 1988.
[20]  V. K. Tuohy, R. A. Sobel, and M. B. Lees, “Myelin proteolipid protein-induced experimental allergic encephalomyelitis. Variations of disease expression in different strains of mice,” Journal of Immunology, vol. 140, no. 6, pp. 1868–1873, 1988.
[21]  F. Bosse, B. Hasse, U. Pippirs, R. Greiner-Petter, and H.-W. Müller, “Proteolipid plasmolipin: localization in polarized cells, regulated expression and lipid raft association in CNS and PNS myelin,” Journal of Neurochemistry, vol. 86, no. 2, pp. 508–518, 2003.
[22]  I. Fischer and V. S. Sapirstein, “Molecular cloning of plasmolipin. Characterization of a novel proteolipid restricted to brain and kidney,” Journal of Biological Chemistry, vol. 269, no. 40, pp. 24912–24919, 1994.
[23]  J. P. Magyar, C. Ebensperger, N. Schaeren-Wiemers, and U. Suter, “Myelin and lymphocyte protein (MAL/MVP17/VIP17) and plasmolipin are members of an extended gene family,” Gene, vol. 189, no. 2, pp. 269–275, 1997.
[24]  N. Schaeren-Wiemers, D. M. Valenzuela, M. Frank, and M. E. Schwab, “Characterization of a rat gene, rMAL, encoding a protein with four hydrophobic domains in central and peripheral myelin,” Journal of Neuroscience, vol. 15, no. 8, pp. 5753–5764, 1995.
[25]  G. Harauz, V. Ladizhansky, and J. M. Boggs, “Structural polymorphism and multifunctionality of myelin basic protein,” Biochemistry, vol. 48, no. 34, pp. 8094–8104, 2009.
[26]  L. Berthelot, D.-A. Laplaud, S. Pettré et al., “Blood CD8+ T cell responses against myelin determinants in multiple sclerosis and healthy individuals,” European Journal of Immunology, vol. 38, no. 7, pp. 1889–1899, 2008.
[27]  J. Burns, B. Bartholomew, and S. Lobo, “Isolation of myelin basic protein-specific T cells predominantly from the memory T-cell compartment in multiple sclerosis,” Annals of Neurology, vol. 45, no. 1, pp. 33–39, 1999.
[28]  Y. K. Chou, D. N. Bourdette, H. Offner et al., “Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis,” Journal of Neuroimmunology, vol. 38, no. 1-2, pp. 105–114, 1992.
[29]  J. Correale and M. de los Milagros Bassani Molinas, “Time course of T-cell responses to MOG and MBP in patients with clinically isolated syndromes,” Journal of Neuroimmunology, vol. 136, no. 1-2, pp. 162–171, 2003.
[30]  J. Correale and S. N. Tenembaum, “Myelin basis protein and myelin oligodendrocyte glycoprotein T-cell repertoire in childhood and juvenile multiple sclerosis,” Multiple Sclerosis, vol. 12, no. 4, pp. 412–420, 2006.
[31]  A. Elong Ngono, S. Pettre, M. Salou, et al., “Frequency of circulating autoreactive T cells committed to myelin determinants in relapsing-remitting multiple sclerosis patients,” Clinical Immunology, vol. 144, no. 2, pp. 117–126, 2012.
[32]  D. A. Hafler, D. S. Benjamin, J. Burks, and H. L. Weiner, “Myelin basic protein and proteolipd protein reactivity of brain and cerebrospinal fluid-derived T cell clones in multiple sclerosis and postinfectious encephalomyelitis,” Journal of Immunology, vol. 139, no. 1, pp. 68–72, 1987.
[33]  G. A. Hashim and M. Brewen, “Myelin basic protein-responsive blood T lymphocytes in patients with multiple sclerosis,” Journal of Neuroscience Research, vol. 13, no. 3, pp. 349–355, 1985.
[34]  C. J. Hedegaard, M. Krakauer, K. Bendtzen, H. Lund, F. Sellebjerg, and C. H. Nielsen, “T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis,” Immunology, vol. 125, no. 2, pp. 161–169, 2008.
[35]  G. Hermans, P. Stinissen, L. Hauben, E. van den Berg-Loonen, J. Raus, and J. Zhang, “Cytokine profile of myelin basic protein-reactive T cells in multiple sclerosis and healthy individuals,” Annals of Neurology, vol. 42, no. 1, pp. 18–27, 1997.
[36]  J. Hong, Y. C. Q. Zang, S. Li, V. M. Rivera, and J. Z. Zhang, “Ex vivo detection of myelin basic protein-reactive T cells in multiple sclerosis and controls using specific TCR oligonucleotide probes,” European Journal of Immunology, vol. 34, no. 3, pp. 870–881, 2004.
[37]  Z. Jingwu, R. Medaer, G. A. Hashim, Y. Chin, E. van den Berg-Loonen, and J. C. M. Raus, “Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity,” Annals of Neurology, vol. 32, no. 3, pp. 330–338, 1992.
[38]  K. Kil, Y. C. Q. Zang, D. Yang et al., “T cell responses to myelin basic protein in patients with spinal cord injury and multiple sclerosis,” Journal of Neuroimmunology, vol. 98, no. 2, pp. 201–207, 1999.
[39]  R. Martin, B. Bielekova, B. Gran, and H. F. McFarland, “Lessons from studies of antigen-specific T cell responses in multiple sclerosis,” Journal of Neural Transmission, Supplement, no. 60, pp. 361–373, 2000.
[40]  E. Meinl, F. Weber, K. Drexler et al., “Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones,” The Journal of Clinical Investigation, vol. 92, no. 6, pp. 2633–2643, 1993.
[41]  M. Mishto, E. Bellavista, C. Ligorio et al., “Immunoproteasome LMP2 60HH variant alters MBP epitope generation and reduces the risk to develop multiple sclerosis in Italian female population,” PLoS ONE, vol. 5, no. 2, article e9287, 2010.
[42]  K. Venken, N. Hellings, K. Hensen, J.-L. Rummens, and P. Stinissen, “Memory CD4+CD T cells from patients with multiple sclerosis produce IL-17 in response to myelin antigens,” Journal of Neuroimmunology, vol. 226, no. 1-2, pp. 185–191, 2010.
[43]  C. T. Harp, S. Ireland, L. S. Davis et al., “Memory B cells from a subset of treatment-na?ve relapsing-remitting multiple sclerosis patients elicit CD4+ T-cell proliferation and IFN-γ production in response to myelin basic protein and myelin oligodendrocyte glycoprotein,” European Journal of Immunology, vol. 40, no. 10, pp. 2942–2956, 2010.
[44]  B. Bielekova, B. Goodwin, N. Richert et al., “Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand,” Nature Medicine, vol. 6, no. 10, pp. 1167–1175, 2000.
[45]  D. Karussis, H. Shor, J. Yachnin, et al., “T cell vaccination benefits relapsing progressive multiple sclerosis patients: a randomized, double-blind clinical trial,” PLoS ONE, vol. 7, no. 12, Article ID e50478, 2012.
[46]  E. W. Loo, M. J. Krantz, and B. Agrawal, “High dose antigen treatment with a peptide epitope of myelin basic protein modulates T cells in multiple sclerosis patients,” Cellular Immunology, vol. 280, no. 1, pp. 10–15, 2012.
[47]  L. Kappos, G. Comi, H. Panitch, et al., “Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group,” Nature Medicine, vol. 6, no. 10, pp. 1176–1182, 2000.
[48]  J. M. Bronstein, P. E. Micevych, and K. Chen, “Oligodendrocyte-specific protein (OSP) is a major component of CNS myelin,” Journal of Neuroscience Research, vol. 50, no. 5, pp. 713–720, 1997.
[49]  S. K. Tiwari-Woodruff, A. G. Buznikov, T. Q. Vu et al., “OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and β1 integrin and regulates proliferation and migration of oligodendrocytes,” Journal of Cell Biology, vol. 153, no. 2, pp. 295–305, 2001.
[50]  E. Chow, J. Mottahedeh, M. Prins, W. Ridder, S. Nusinowitz, and J. M. Bronstein, “Disrupted compaction of CNS myelin in an OSP/Claudin-11 and PLP/DM20 double knockout mouse,” Molecular and Cellular Neuroscience, vol. 29, no. 3, pp. 405–413, 2005.
[51]  J. Devaux and A. Gow, “Tight junctions potentiate the insulative properties of small CNS myelinated axons,” Journal of Cell Biology, vol. 183, no. 5, pp. 909–921, 2008.
[52]  N. Kaushansky, M.-C. Zhong, N. Kerlero de Rosbo, R. Hoeftberger, H. Lassmann, and A. Ben-Nun, “Epitope specificity of autoreactive T and B cells associated with experimental autoimmune encephalomyelitis and optic neuritis induced by oligodendrocyte-specific protein in SJL/J mice,” Journal of Immunology, vol. 177, no. 10, pp. 7364–7376, 2006.
[53]  J. M. Greer, P. A. Csurhes, D. M. Muller, and M. P. Pender, “Correlation of blood T cell and antibody reactivity to myelin proteins with HLA type and lesion localization in multiple sclerosis,” Journal of Immunology, vol. 180, no. 9, pp. 6402–6410, 2008.
[54]  T. Vu, L. W. Myers, G. W. Ellison, F. Mendoza, and J. M. Bronstein, “T-cell responses to oligodendrocyte-specific protein in multiple sclerosis,” Journal of Neuroscience Research, vol. 66, no. 3, pp. 506–509, 2001.
[55]  C. A. Dyer, “Novel oligodendrocyte transmembrane signaling systems—investigations utilizing antibodies as ligands,” Molecular Neurobiology, vol. 7, no. 1, pp. 1–22, 1993.
[56]  J. Correale, M. F. Farez, and M. C. Ysrraelit, “Increase in multiple sclerosis activity after assisted reproduction technology,” Annals of Neurology, vol. 72, no. 5, pp. 682–694, 2012.
[57]  N. Kerlero de Rosbo and A. Ben-Nun, “T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein,” Journal of Autoimmunity, vol. 11, no. 4, pp. 287–299, 1998.
[58]  S. Jilek, M. Schluep, G. Pantaleo, and R. A. Du Pasquier, “MOBP-specific cellular immune responses are weaker than MOG-specific cellular immune responses in patients with multiple sclerosis and healthy subjects,” Neurological Sciences, vol. 34, no. 4, pp. 539–543, 2013.
[59]  N. Kerlero de Rosbo, R. Milo, M. B. Lees, D. Burger, C. C. A. Bernard, and A. Ben-Nun, “Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein,” The Journal of Clinical Investigation, vol. 92, no. 6, pp. 2602–2608, 1993.
[60]  N. K. U. Koehler, C. P. Genain, B. Giesser, and S. L. Hauser, “The human T cell response to myelin oligodendrocyte glycoprotein: a multiple sclerosis family-based study,” Journal of Immunology, vol. 168, no. 11, pp. 5920–5927, 2002.
[61]  R.-B. Lindert, C. G. Haase, U. Brehm, C. Linington, H. Wekerle, and R. Hohlfeld, “Multiple sclerosis: B- and T-cell responses to the extracellular domain of the myelin oligodendrocyte glycoprotein,” Brain, vol. 122, part 11, pp. 2089–2099, 1999.
[62]  M. Mandel, M. Gurevich, G. Lavie, I. R. Cohen, and A. Achiron, “Unique gene expression patterns in human T-cell lines generated from multiple sclerosis patients by stimulation with a synthetic MOG peptide,” Clinical and Developmental Immunology, vol. 12, no. 3, pp. 203–209, 2005.
[63]  I. R. Moldovan, A. C. Cotleur, N. Zamor, R. S. Butler, and C. M. Pelfrey, “Multiple sclerosis patients show sexual dimorphism in cytokine responses to myelin antigens,” Journal of Neuroimmunology, vol. 193, no. 1-2, pp. 161–169, 2008.
[64]  K. Raddassi, S. C. Kent, J. Yang et al., “Increased frequencies of myelin oligodendrocyte glycoprotein/MHC class II-binding CD4 cells in patients with multiple sclerosis,” Journal of Immunology, vol. 187, no. 2, pp. 1039–1046, 2011.
[65]  E. Wallstr?m, M. Khademi, M. Andersson, R. Weissert, C. Linington, and T. Olsson, “Increased reactivity to myelin oligodendrocyte glycoprotein peptides and epitope mapping in HLA DR2(15)+ multiple sclerosis,” European Journal of Immunology, vol. 28, no. 10, pp. 3329–3335, 1998.
[66]  A. A. Vyas and R. L. Schnaar, “Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration,” Biochimie, vol. 83, no. 7, pp. 677–682, 2001.
[67]  R. L. Schnaar, “Brain gangliosides in axon-myelin stability and axon regeneration,” FEBS Letters, vol. 584, no. 9, pp. 1741–1747, 2010.
[68]  R. H. Quarles, “Myelin-associated glycoprotein (MAG): past, present and beyond,” Journal of Neurochemistry, vol. 100, no. 6, pp. 1431–1448, 2007.
[69]  M. Andersson, M. Yu, M. S?derstr?m et al., “Multiple MAG peptides are recognized by circulating T and B lymphocytes in polyneuropathy and multiple sclerosis,” European Journal of Neurology, vol. 9, no. 3, pp. 243–251, 2002.
[70]  T. Tsuchida, K. C. Parker, R. V. Turner, H. F. McFarland, J. E. Coligan, and W. E. Biddison, “Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 23, pp. 10859–10863, 1994.
[71]  P. E. Braun, F. Sandillon, A. Edwards, J.-M. Matthieu, and A. Privat, “Immunocytochemical localization by electron microscopy of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain,” Journal of Neuroscience, vol. 8, no. 8, pp. 3057–3066, 1988.
[72]  J. Lee, M. Gravel, R. Zhang, P. Thibault, and P. E. Braun, “Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein,” Journal of Cell Biology, vol. 170, no. 4, pp. 661–673, 2005.
[73]  P. A. Muraro, M. Kalbus, G. Afshar, H. F. McFarland, and R. Martin, “T cell response to 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in multiple sclerosis patients,” Journal of Neuroimmunology, vol. 130, no. 1-2, pp. 233–242, 2002.
[74]  C. Linington and M. G. Rumsby, “Accessibility of galactosyl ceramides to probe reagents in central nervous system myelin,” Journal of Neurochemistry, vol. 35, no. 4, pp. 983–992, 1980.
[75]  D. Wheeler, V. V. R. Bandaru, P. A. Calabresi, A. Nath, and N. J. Haughey, “A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis,” Brain, vol. 131, part 11, pp. 3092–3102, 2008.
[76]  S. Yahara, N. Kawamura, Y. Kishimoto, T. Saida, and W. W. Tourtellotte, “A change in the cerebrosides and sulfatides in a demyelinating nervous system. Development of the methodology and study of multiple sclerosis and Wallerian degeneration,” Journal of the Neurological Sciences, vol. 54, no. 2, pp. 303–315, 1982.
[77]  J. Qin, R. Goswami, R. Balabanov, and G. Dawson, “Oxidized phosphatidylcholine is a marker for neuroinflammation in multiple sclerosis brain,” Journal of Neuroscience Research, vol. 85, no. 5, pp. 977–984, 2007.
[78]  T. Coetzee, N. Fujita, J. Dupree et al., “Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability,” Cell, vol. 86, no. 2, pp. 209–219, 1996.
[79]  T. Coet, K. Suzuki, and B. Popko, “New perspectives on the function of myelin galactolipids,” Trends in Neurosciences, vol. 21, no. 3, pp. 126–130, 1998.
[80]  J. L. Dupree, T. Coetzee, A. Blight, K. Suzuki, and B. Popko, “Myelin galactolipids are essential for proper node of Ranvier formation in the CNS,” Journal of Neuroscience, vol. 18, no. 5, pp. 1642–1649, 1998.
[81]  J. L. Dupree and B. Popko, “Genetic dissection of myelin galactolipid function,” Journal of Neurocytology, vol. 28, no. 4-5, pp. 271–279, 1999.
[82]  T. Coetzee, J. L. Dupree, and B. Popko, “Demyelination and altered expression of myelin-associated glycoprotein isoforms in the central nervous system of galactolipid-deficient mice,” Journal of Neuroscience Research, vol. 54, no. 5, pp. 613–622, 1998.
[83]  S. N. Fewou, A. Fernandes, K. Stockdale et al., “Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids,” Journal of Neurochemistry, vol. 112, no. 3, pp. 599–610, 2010.
[84]  K. Ueno, S. Ando, and R. K. Yu, “Gangliosides of human, cat, and rabbit spinal cords and cord myelin,” Journal of Lipid Research, vol. 19, no. 7, pp. 863–871, 1978.
[85]  E. A. Miljan and E. G. Bremer, “Regulation of growth factor receptors by gangliosides,” Science's STKE, vol. 2002, no. 160, p. re15, 2002.
[86]  S. H. Yim, R. G. Farrer, J. A. Hammer, E. Yavin, and R. H. Quarles, “Differentiation of oligodendrocytes cultured from developing rat brain is enhanced by exogenous GM3 ganglioside,” Journal of Neuroscience Research, vol. 38, no. 3, pp. 268–281, 1994.
[87]  B. Bielekova, M.-H. Sung, N. Kadom, R. Simon, H. McFarland, and R. Martin, “Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis,” Journal of Immunology, vol. 172, no. 6, pp. 3893–3904, 2004.
[88]  D. Johnson, D. A. Hafler, R. J. Fallis, et al., “Cell-mediated immunity to myelin-associated glycoprotein, proteolipid protein, and myelin basic protein in multiple sclerosis,” Journal of Neuroimmunology, vol. 13, no. 1, pp. 99–108, 1986.
[89]  T. Olsson, W. W. Zhi, B. Hojeberg et al., “Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-γ,” The Journal of Clinical Investigation, vol. 86, no. 3, pp. 981–985, 1990.
[90]  J.-B. Sun, T. Olsson, W.-Z. Wang et al., “Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls,” European Journal of Immunology, vol. 21, no. 6, pp. 1461–1468, 1991.
[91]  J. L. Trotter, W. F. Hickey, R. C. van der Veen, and L. Sulze, “Peripheral blood mononuclear cells from multiple sclerosis patients recognize myelin proteolipid protein and selected peptides,” Journal of Neuroimmunology, vol. 33, no. 1, pp. 55–62, 1991.
[92]  J. M. Greer, P. A. Csurhes, K. D. Cameron, P. A. McCombe, M. F. Good, and M. P. Pender, “Increased immunoreactivity to two overlapping peptides of myelin proteolipid protein in multiple sclerosis,” Brain, vol. 120, part 8, pp. 1447–1460, 1997.
[93]  C. M. Pelfrey, J. L. Trotter, L. R. Tranquill, and H. F. McFarland, “Identification of a novel T cell epitope of human proteolipid protein (residues 40-60) recognized by proliferative and cytolytic CD4+ T cells from multiple sclerosis patients,” Journal of Neuroimmunology, vol. 46, no. 1-2, pp. 33–42, 1993.
[94]  C. M. Pelfrey, J. L. Trotter, L. R. Tranquill, and H. F. McFarland, “Identification of a second T cell epitope of human proteolipid protein (residues 89-106) recognized by proliferative and cytolytic CD4+ T cells from multiple sclerosis patients,” Journal of Neuroimmunology, vol. 53, no. 2, pp. 153–161, 1994.
[95]  M. Soderstrom, H. Link, J.-B. Sun, S. Fredrikson, Z.-Y. Wang, and W.-X. Huang, “Autoimmune T cell repertoire in optic neuritis and multiple sclerosis: T cells recognising multiple myelin proteins are accumulated in cerebrospinal fluid,” Journal of Neurology Neurosurgery and Psychiatry, vol. 57, no. 5, pp. 544–551, 1994.
[96]  J. Zhang, S. Markovic-Plese, B. Lacet, J. Raus, H. L. Weiner, and D. A. Hafler, “Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis,” Journal of Experimental Medicine, vol. 179, no. 3, pp. 973–984, 1994.
[97]  N. Hellings, G. Gelin, R. Medaer et al., “Longitudinal study of antimyelin T-cell reactivity in relapsing-remitting multiple sclerosis: association with clinical and MRI activity,” Journal of Neuroimmunology, vol. 126, no. 1-2, pp. 143–160, 2002.
[98]  J. L. Trotter, C. M. Pelfrey, A. L. Trotter et al., “T cell recognition of myelin proteolipid protein and myelin proteolipid protein peptides in the peripheral blood of multiple sclerosis and control subjects,” Journal of Neuroimmunology, vol. 84, no. 2, pp. 172–178, 1998.
[99]  S. Markovic-Plese, H. Fukaura, J. Zhang et al., “T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans,” Journal of Immunology, vol. 155, no. 2, pp. 982–992, 1995.
[100]  M. P. Pender, P. A. Csurhes, J. M. Greer et al., “Surges of increased T cell reactivity to an encephalitogenic region of myelin proteolipid protein occur more often in patients with multiple sclerosis than in healthy subjects,” Journal of Immunology, vol. 165, no. 9, pp. 5322–5331, 2000.
[101]  J. M. Greer, C. Klinguer, E. Trifilieff, R. A. Sobel, and M. B. Lees, “Encephalitogenicity of murine, but not bovine, DM20 in SJL mice is due to a single amino acid difference in the immunodominant encephalitogenic epitope,” Neurochemical Research, vol. 22, no. 4, pp. 541–547, 1997.
[102]  W. E. Biddison, W. W. Cruikshank, D. M. Center, C. M. Pelfrey, D. D. Taub, and R. V. Turner, “CD8+ myelin peptide-specific T cells can chemoattract CD4+ myelin peptide-specific T cells: importance of IFN-inducible protein 10,” Journal of Immunology, vol. 160, no. 1, pp. 444–448, 1998.
[103]  W. E. Biddison, D. D. Taub, W. W. Cruikshank, D. M. Center, E. W. Connor, and K. Honma, “Chemokine and matrix metalloproteinase secretion by myelin proteolipid protein-specific CD8+ T cells: potential roles in inflammation,” Journal of Immunology, vol. 158, no. 7, pp. 3046–3053, 1997.
[104]  J. Correale, M. Arias, and W. Gilmore, “Steroid hormone regulation of cytokine secretion by proteolipid protein- specific CD4+ T cell clones isolated from multiple sclerosis patients and normal control subjects,” Journal of Immunology, vol. 161, no. 7, pp. 3365–3374, 1998.
[105]  J. Correale, W. Gilmore, S. Li et al., “Resistance to glucocorticoid-induced apoptosis in PLP peptide-specific T cell clones from patients with progressive MS,” Journal of Neuroimmunology, vol. 109, no. 2, pp. 197–210, 2000.
[106]  J. Correale, W. Gilmore, M. McMillan et al., “Patterns of cytokine secretion by autoreactive proteolipid protein- specific T cell clones during the course of multiple sclerosis,” Journal of Immunology, vol. 154, no. 6, pp. 2959–2968, 1995.
[107]  J. Correale, M. McMillan, S. Li, K. McCarthy, T. Le, and L. P. Weiner, “Antigen presentation by autoreactive proteolipid protein peptide-specific T cell clones from chronic progressive multiple sclerosis patients: roles of co-stimulatory B7 molecules and IL-12,” Journal of Neuroimmunology, vol. 72, no. 1, pp. 27–43, 1997.
[108]  J. Correale, M. McMillan, K. McCarthy, T. Le, and L. P. Weiner, “Isolation and characterization of autoreactive proteolipid protein- peptide specific T-cell clones from multiple sclerosis patients,” Neurology, vol. 45, no. 7, pp. 1370–1378, 1995.
[109]  M. P. Crawford, S. X. Yan, S. B. Ortega et al., “High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay,” Blood, vol. 103, no. 11, pp. 4222–4231, 2004.
[110]  T. Kondo and T. Ohashi, “T cell immunity to proteolipid protein (PLP) in multiple sclerosis (MS): identification of DR2-associated PLP determinants and conserved TCR CDR3 motifs,” Nippon Rinsho, vol. 52, no. 11, pp. 2940–2945, 1994.
[111]  T. Kondo, T. Yamamura, J.-I. Inobe, T. Ohashi, K. Takahashi, and T. Tabira, “TCR repertoire to proteolipid protein (PLP) in multiple sclerosis (MS): homologies between PLP-specific T cells and MS-associated T cells in TCR junctional sequences,” International Immunology, vol. 8, no. 1, pp. 123–130, 1996.
[112]  T. Ohashi, T. Yamamura, J.-I. Inobe, T. Kondo, T. Kunishita, and T. Tabira, “Analysis of proteolipid protein (PLP)-specific T cells in multiple sclerosis: identification of PLP 95-116 as an HLA-DR2,w15-associated determinant,” International Immunology, vol. 7, no. 11, pp. 1771–1778, 1995.
[113]  K. Honma, K. C. Parker, K. G. Becker, H. F. McFarland, J. E. Coligan, and W. E. Biddison, “Identification of an epitope derived from human proteolipid protei nthat can induce autoreactive CD8+ cytotoxic T lymphocytes restricted by HLA-A3: evidence for cross-reactivity with an environmental microorganism,” Journal of Neuroimmunology, vol. 73, no. 1-2, pp. 7–14, 1997.
[114]  C. M. Pelfrey, L. R. Tranquill, A. B. Vogt, and H. F. McFarland, “T cell response to two immunodominant proteolipid protein (PLP) peptides in multiple sclerosis patients and healthy controls,” Multiple Sclerosis, vol. 1, no. 5, pp. 270–278, 1996.
[115]  V. K. Tuohy, M. Yu, B. Weinstock-Guttman, and R. P. Kinkel, “Diversity and plasticity of self recognition during the development of multiple sclerosis,” The Journal of Clinical Investigation, vol. 99, no. 7, pp. 1682–1690, 1997.
[116]  Z. Illés, T. Kondo, K. Yokoyama, T. Ohashi, T. Tabira, and T. Yamamura, “Identification of autoimmune T cells among in vivo expanded CD25+ T cells in multiple sclerosis,” Journal of Immunology, vol. 162, no. 3, pp. 1811–1817, 1999.
[117]  M. V. Tejada-Simon, Y. C. Q. Zang, D. Yang et al., “Aberrant T cell responses to myelin antigens during clinical exacerbation in patients with multiple sclerosis,” International Immunology, vol. 12, no. 12, pp. 1641–1650, 2000.
[118]  M. Minohara, H. Ochi, S. Matsushita, A. Irie, Y. Nishimura, and J. Kira, “Differences between T-cell reactivities to major myelin protein-derived peptides in opticospinal and conventional forms of multiple sclerosis and healthy controls,” Tissue Antigens, vol. 57, no. 5, pp. 447–456, 2001.
[119]  C. M. Pelfrey, R. A. Rudick, A. C. Cotleur, J.-C. Lee, M. Tary-Lehmann, and P. V. Lehmann, “Quantification of self-recognition in multiple sclerosis by single-cell analysis of cytokine production,” Journal of Immunology, vol. 165, no. 3, pp. 1641–1651, 2000.
[120]  C. M. Pelfrey, A. C. Cotleur, J.-C. Lee, and R. A. Rudick, “Sex differences in cytokine responses to myelin peptides in multiple sclerosis,” Journal of Neuroimmunology, vol. 130, no. 1-2, pp. 211–223, 2002.
[121]  J. M. Greer, P. A. Csurhes, M. P. Pender, and P. A. McCombe, “Effect of gender on T-cell proliferative responses to myelin proteolipid protein antigens in patients with multiple sclerosis and controls,” Journal of Autoimmunity, vol. 22, no. 4, pp. 345–352, 2004.
[122]  I. R. Moldovan, R. A. Rudick, A. C. Cotleur et al., “Interferon gamma responses to myelin peptides in multiple sclerosis correlate with a new clinical measure of disease progression,” Journal of Neuroimmunology, vol. 141, no. 1-2, pp. 132–140, 2003.
[123]  M. V. Tejada-Simon, J. Hong, V. M. Rivera, and J. Z. Zhang, “Reactivity pattern and cytokine profile of T cells primed by myelin peptides in multiple sclerosis and healthy individuals,” European Journal of Immunology, vol. 31, no. 3, pp. 907–917, 2001.
[124]  N. Matsuya, M. Komori, K. Nomura et al., “Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica,” International Immunology, vol. 23, no. 9, pp. 565–573, 2011.
[125]  B. W. Biegler, S. X. Yan, S. B. Ortega, D. K. Tennakoon, M. K. Racke, and N. J. Karandikar, “Clonal composition of neuroantigen-specific CD8+ and CD4+ T-cells in multiple sclerosis,” Journal of Neuroimmunology, vol. 234, no. 1-2, pp. 131–140, 2011.
[126]  N. Kaushansky, D. M. Altmann, C. S. David, H. Lassmann, and A. Ben-Nun, “DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP),” Journal of Neuroinflammation, vol. 9, article 29, 2012.
[127]  P. A. McCombe, J. M. Greer, and I. R. Mackay, “Sexual dimorphism in autoimmune disease,” Current Molecular Medicine, vol. 9, no. 9, pp. 1058–1079, 2009.
[128]  J. M. Greer, B. Denis, R. A. Sobel, and E. Trifilieff, “Thiopalmitoylation of myelin proteolipid protein epitopes enhances immunogenicity and encephalitogenicity,” Journal of Immunology, vol. 166, no. 11, pp. 6907–6913, 2001.
[129]  N. A. Pfender, S. Grosch, G. Roussel, M. Koch, E. Trifilieff, and J. M. Greer, “Route of uptake of palmitoylated encephalitogenic peptides of myelin proteolipid protein by antigen-presenting cells: importance of the type of bond between lipid chain and peptide and relevance to autoimmunity,” Journal of Immunology, vol. 180, no. 3, pp. 1398–1404, 2008.
[130]  N. Barrese, B. Mak, L. Fisher, and M. A. Moscarello, “Mechanism of demyelination in DM20 transgenic mice involves increased fatty acylation,” Journal of Neuroscience Research, vol. 53, no. 2, pp. 143–152, 1998.
[131]  H. Takashima, D. R. Smith, H. Fukaura, S. J. Khoury, D. A. Hafler, and H. L. Weiner, “Pulse cyclophosphamide plus methylprednisolone induces myelin-antigen- specific IL-4-secreting T cells in multiple sclerosis patients,” Clinical Immunology and Immunopathology, vol. 88, no. 1, pp. 28–34, 1998.
[132]  C. Vandevyver, N. Martens, P. van den Elsen, R. Medaer, J. Raus, and J. Zhang, “Clonal expansion of myelin basic protein-reactive T cells in patients with multiple sclerosis: restricted T cell receptor V gene rearrangements and CDR3 sequence,” European Journal of Immunology, vol. 25, no. 4, pp. 958–968, 1995.
[133]  D. M. Muller, M. P. Pender, and J. M. Greer, “A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction,” Acta Neuropathologica, vol. 100, no. 2, pp. 174–182, 2000.
[134]  A. Chiba, S. Kusunoki, T. Shimizu, and I. Kanazawa, “Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome,” Annals of Neurology, vol. 31, no. 6, pp. 677–679, 1992.
[135]  U. Enders, H. Karch, K. V. Toyka et al., “The spectrum of immune responses to Campylobacter jejuni and glycoconjugates in Guillain-Barre syndrome and in other neuroimmunological disorders,” Annals of Neurology, vol. 34, no. 2, pp. 136–144, 1993.
[136]  A. A. Ilyas, F. A. Mithen, M. C. Dalakas, Z.-W. Chen, and S. D. Cook, “Antibodies to acidic glycolipids in Guillain-Barre syndrome and chronic inflammatory demyelinating polyneuropathy,” Journal of the Neurological Sciences, vol. 107, no. 1, pp. 111–121, 1992.
[137]  J. L. Kanter, S. Narayana, P. P. Ho et al., “Lipid microarrays identify key mediators of autoimmune brain inflammation,” Nature Medicine, vol. 12, no. 1, pp. 138–143, 2006.
[138]  N. Acarín, J. Río, A. L. Fernández et al., “Different antiganglioside antibody pattern between relapsing-remitting and progressive multiple sclerosis,” Acta Neurologica Scandinavica, vol. 93, no. 2-3, pp. 99–103, 1996.
[139]  R. Arnon, E. Crisp, and R. Kelley, “Anti-ganglioside antibodies in multiple sclerosis,” Journal of the Neurological Sciences, vol. 46, no. 2, pp. 179–186, 1980.
[140]  N. Kasai, A. R. Pachner, and R. K. Yu, “Anti-glycolipid antibodies and their immune complexes in multiple sclerosis,” Journal of the Neurological Sciences, vol. 75, no. 1, pp. 33–42, 1986.
[141]  S. Marconi, M. Acler, L. Lovato et al., “Anti-GD2-like IgM autoreactivity in multiple sclerosis patients,” Multiple Sclerosis, vol. 12, no. 3, pp. 302–308, 2006.
[142]  S. Matà, F. Lolli, M. S?derstr?m, F. Pinto, and H. Link, “Multiple sclerosis is associated with enhanced B cell responses to the ganglioside GD1a,” Multiple Sclerosis, vol. 5, no. 6, pp. 379–388, 1999.
[143]  N. Miyatani, M. Saito, T. Ariga, H. Yoshino, and R. K. Yu, “Glyocosphingolipids in the cerebrospinal fluid of patients with multiple sclerosis,” Molecular and Chemical Neuropathology, vol. 13, no. 3, pp. 205–216, 1990.
[144]  B. T. Sadatipour, J. M. Greer, and M. P. Pender, “Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis,” Annals of Neurology, vol. 44, no. 6, pp. 980–983, 1998.
[145]  S. S. Sergeeva, E. Zaprianova, O. S. Sotnikov, D. Deleva, A. Filchev, and B. Sultanov, “Antibodies against gangliosides GM1 of patients with multiple sclerosis alter the response of neurons to synaptic activation,” Doklady Biological Sciences, vol. 399, no. 1–6, pp. 461–463, 2004.
[146]  S. Simonetti and E. Capello, “Acute pure motor neuropathy with antibodies to gangliosides in a patient with multiple sclerosis,” Journal of Neurology, vol. 245, no. 9, pp. 617–619, 1998.
[147]  A. Stevens, M. Weller, and H. Wietholter, “CSF and serum ganglioside antibody patterns in MS,” Acta Neurologica Scandinavica, vol. 86, no. 5, pp. 485–489, 1992.
[148]  E. Zaprianova, K. Majtényi, D. Deleva et al., “Serum IgG and IgM ganglioside GM1 antibodies in patients with multiple sclerosis,” Ideggyogyaszati Szemle, vol. 57, no. 3-4, pp. 94–99, 2004.
[149]  P. J. Felsburg and R. Edelman, “The active E rosette test: a sensitive in vitro correlate for human delayed type hypersensitivity,” Journal of Immunology, vol. 118, no. 1, pp. 62–66, 1977.
[150]  G. A. Hashim, D. H. Lee, J. C. Pierce, C. W. Braun, and Fitzpatrick, “Myelin basic protein stimulated rosette forming T cells in multiple sclerosis,” Neurochemical Research, vol. 3, no. 1, pp. 37–48, 1978.
[151]  P. Selvaraj, M. L. Plunkett, M. Dustin, M. E. Sanders, S. Shaw, and T. A. Springer, “The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3,” Nature, vol. 326, no. 6111, pp. 400–403, 1987.
[152]  P. L. de Jager, C. Baecher-Allan, L. M. Maier, et al., “The role of the CD58 locus in multiple sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5264–5269, 2009.
[153]  J. P. Rubio, J. Stankovich, J. Field et al., “Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians,” Genes and Immunity, vol. 9, no. 7, pp. 624–630, 2008.
[154]  H. Offner and G. Konat, “Stimulation of active E-rosette forming lymphocytes from multiple sclerosis patients by gangliosides and cerebrosides,” Journal of the Neurological Sciences, vol. 46, no. 1, pp. 101–104, 1980.
[155]  H. Offner, G. Konat, and B. A. Sela, “Multi-sialo brain gangliosides are powerful stimulators of active E-rosetting lymphocytes from multiple sclerosis patients,” Journal of the Neurological Sciences, vol. 52, no. 2-3, pp. 279–287, 1981.
[156]  A. A. Ilyas and A. N. Davison, “Cellular hypersensitivity to gangliosides and myelin basic protein in multiple sclerosis,” Journal of the Neurological Sciences, vol. 59, no. 1, pp. 85–95, 1983.
[157]  E. Frick, “Immunological studies of the pathogenesis of multiple sclerosis. Cell-mediated cytotoxicity by peripheral blood lymphocytes against basic protein of myelin, encephalitogenic peptide, cerebrosides and gangliosides,” Acta Neurologica Scandinavica, vol. 79, no. 1, pp. 1–11, 1989.
[158]  A. Bellamy, A. N. Davison, and M. Feldmann, “Derivation of ganglioside-specific T cell lines of suppressor or helper phenotype from cerebrospinal fluid of multiple sclerosis patients,” Journal of Neuroimmunology, vol. 12, no. 2, pp. 107–120, 1986.
[159]  E. Beraud, M. M. Golstein, F. Viallet et al., “Multiple sclerosis: cell-mediated immunity to human brain gangliosides,” Autoimmunity, vol. 6, no. 1-2, pp. 13–21, 1990.
[160]  S. Ladisch, H. Becker, and L. Ulsh, “Immunosuppression by human gangliosides: I. Relationship of carbohydrate structure to the inhibition of T cell responses,” Biochimica et Biophysica Acta, vol. 1125, no. 2, pp. 180–188, 1992.
[161]  D. N. Irani, K.-L. Lin, and D. E. Griffin, “Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells,” Journal of Immunology, vol. 157, no. 10, pp. 4333–4340, 1996.
[162]  P. P. Ho, J. L. Kanter, A. M. Johnson, et al., “Identification of naturally occurring fatty acids of the myelin sheath that resolve neuroinflammation,” Science Translational Medicine, vol. 4, no. 137, p. 137ra73, 2012.
[163]  S. A. Porcelli and R. L. Modlin, “The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids,” Annual Review of Immunology, vol. 17, pp. 297–329, 1999.
[164]  A. Shamshiev, A. Donda, I. Carena, L. Mori, L. Kappos, and G. de Libero, “Self glycolipids as T-cell autoantigens,” European Journal of Immunology, vol. 29, no. 5, pp. 1667–1675, 1999.
[165]  C. M. Caporale, F. Notturno, M. Pace et al., “CD1A and CD1E gene polymorphisms are associated with susceptibility to multiple sclerosis,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 1, pp. 175–183, 2011.
[166]  M. P. Pender, P. A. Csurhes, N. P. Wolfe et al., “Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis,” Journal of Clinical Neuroscience, vol. 10, no. 1, pp. 63–66, 2003.
[167]  Q. Song, Q. Han, E. M. Bradshaw et al., “On-chip activation and subsequent detection of individual antigen-specific T cells,” Analytical Chemistry, vol. 82, no. 2, pp. 473–477, 2010.
[168]  S. Daubeuf, A.-L. Puaux, E. Joly, and D. Hudrisier, “A simple trogocytosis-based method to detect, quantify, characterize and purify antigen-specific live lymphocytes by flow cytometry, via their capture of membrane fragments from antigen-presenting cells,” Nature Protocols, vol. 1, no. 6, pp. 2536–2542, 2006.
[169]  B. Bahbouhi, S. Pettré, L. Berthelot et al., “T cell recognition of self-antigen presenting cells by protein transfer assay reveals a high frequency of anti-myelin T cells in multiple sclerosis,” Brain, vol. 133, part 6, pp. 1622–1636, 2010.
[170]  N. Baumann and D. Pham-Dinh, “Biology of oligodendrocyte and myelin in the mammalian central nervous system,” Physiological Reviews, vol. 81, no. 2, pp. 871–927, 2001.
[171]  A. Fasano, A. Amoresano, R. Rossano et al., “The different forms of PNS myelin P0 protein within and outside lipid rafts,” Journal of Neurochemistry, vol. 107, no. 1, pp. 291–301, 2008.
[172]  S. Greenfield, S. Brostoff, E. H. Eylar, and P. Morell, “Protein composition of myelin of the peripheral nervous system,” Journal of Neurochemistry, vol. 20, no. 4, pp. 1207–1216, 1973.
[173]  G. J. Snipes, U. Suter, A. A. Welcher, and E. M. Shooter, “Characterization of a novel peripheral nervous system myelin protein (PMP- 22/SR13),” Journal of Cell Biology, vol. 117, no. 1, pp. 225–238, 1992.
[174]  M. J. Evans and J. B. Finean, “The lipid composition of myelin from brain and peripheral nerve,” Journal of Neurochemistry, vol. 12, no. 8, pp. 729–734, 1965.
[175]  P. Morell and R. H. Quarles, “Characteristic composition of myelin,” in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, G. J. Siegel, B. W. Agranoff, and R. W. Albers, Eds., Lippincott-Raven, 1999.
[176]  R. K. Yu, Y.-T. Tsai, and T. Ariga, “Functional roles of gangliosides in neurodevelopment: an overview of recent advances,” Neurochemical Research, vol. 37, pp. 1230–1244, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133