The aim of this study was to evaluate diffusion tensor imaging (DTI) indices in the corpus callosum and pyramidal tract in normal-appearing white matter (NAWM) and the caudate nucleus and thalamus in deep grey matter (NADGM) in all MS subtypes and clinically isolated syndrome (CIS). Furthermore, it was determined whether these metrics are associated with clinical measures and the serum levels of candidate immune biomarkers. Apparent diffusion coefficients (ADC) values were significantly higher than in controls in all six studied NAWM regions in SPMS, 4/6 regions in RRMS and PPMS and 2/6 regions in CIS. In contrast, decreased fractional anisotropy (FA) values in comparison to controls were detected in 2/6 NAWM regions in SPMS and 1/6 in RRMS and PPMS. In RRMS, the level of neurological disability correlated with thalamic FA values ( , ). In chronic progressive subtypes and CIS, ADC values of NAWM and NADGM were associated with the levels of MIF, sFas, and sTNF-α. Our data indicate that DTI may be useful in detecting pathological changes in NAWM and NADGM in MS patients and that these changes are related to neurological disability. 1. Introduction Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS), and it is characterised by inflammation, demyelination and degenerative changes [1]. The identification of surrogate markers reflecting pathophysiological events in the CNS and correlating with clinical outcomes is highly needed for refining diagnostics and developing therapeutic approaches in patients with MS [2, 3]. Magnetic resonance imaging (MRI) is the most valuable paraclinical tool for monitoring the disease process in vivo, but the correlations between clinical and conventional imaging measures detected thus far have been generally suboptimal [4]. This phenomenon is most likely explained by the limitations of expanded disability status scale (EDSS) scoring and the ability of conventional MRI to reflect changes in the CNS consistent with different manifestations of MS [4, 5]. Recent neuropathological studies in MS have shown widespread tissue damage in both normal-appearing white matter (NAWM) and grey matter (NAGM) tissues [6] that are not detected by conventional MRI [7]. Nonconventional MRI approaches such as diffusion tensor imaging (DTI) allow for further examination of brain tissues in vivo. DTI utilises the orientation-dependent diffusion property of water molecules within the CNS and provides unique information on the pathological processes that reflect the microstructural damage in brain [8]. Tissue
References
[1]
G. F. Wu and E. Alvarez, “The immunopathophysiology of multiple sclerosis,” Neurologic Clinics, vol. 29, no. 2, pp. 257–278, 2011.
[2]
M. Comabella and K. Vandenbroeck, “Pharmacogenomics and multiple sclerosis: moving toward individualized medicine,” Current Neurology and Neuroscience Reports, vol. 11, no. 5, pp. 484–491, 2011.
[3]
U. Ziemann, M. Wahl, E. Hattingen, and H. Tumani, “Development of biomarkers for multiple sclerosis as a neurodegenerative disorder,” Progress in Neurobiology, vol. 95, no. 4, pp. 670–685, 2011.
[4]
M. Filippi and F. Agosta, “Imaging biomarkers in multiple sclerosis,” Journal of Magnetic Resonance Imaging, vol. 31, no. 4, pp. 770–788, 2010.
[5]
J. A. Cohen, S. C. Reingold, C. H. Polman, and J. S. Wolinsky, “Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects,” The Lancet Neurology, vol. 11, no. 5, pp. 467–476, 2012.
[6]
A. Kutzelnigg, C. F. Lucchinetti, C. Stadelmann et al., “Cortical demyelination and diffuse white matter injury in multiple sclerosis,” Brain, vol. 128, no. 11, pp. 2705–2712, 2005.
[7]
M. Filippi, M. Absinta, and M. A. Rocca, “Future MRI tools in multiple sclerosis,” Journal of the Neurological Sciences, vol. 331, no. 1, pp. 14–18, 2013.
[8]
M. Rovaris, F. Agosta, E. Pagani, and M. Filippi, “Diffusion tensor MR imaging,” Neuroimaging Clinics of North America, vol. 19, no. 1, pp. 37–43, 2009.
[9]
H. Vrenken, J. J. G. Geurts, D. L. Knol et al., “Normal-appearing white matter changes vary with distance to lesions in multiple sclerosis,” American Journal of Neuroradiology, vol. 27, no. 9, pp. 2005–2011, 2006.
[10]
S. D. Roosendaal, J. J. G. Geurts, H. Vrenken et al., “Regional DTI differences in multiple sclerosis patients,” NeuroImage, vol. 44, no. 4, pp. 1397–1403, 2009.
[11]
M. Cercignani, M. Bozzali, G. Iannucci, G. Comi, and M. Filippi, “Intra-voxel and inter-voxel coherence in patients with multiple sclerosis assessed using diffusion tensor MRI,” Journal of Neurology, vol. 249, no. 7, pp. 875–883, 2002.
[12]
G. Poloni, A. Minagar, E. M. Haacke, and R. Zivadinov, “Recent developments in imaging of multiple sclerosis,” Neurologist, vol. 17, no. 4, pp. 185–204, 2011.
[13]
R. G. Henry, M. Shieh, B. Amirbekian, S. Chung, D. T. Okuda, and D. Pelletier, “Connecting white matter injury and thalamic atrophy in clinically isolated syndromes,” Journal of the Neurological Sciences, vol. 282, no. 1-2, pp. 61–66, 2009.
[14]
G. Tao, S. Datta, R. He, F. Nelson, J. S. Wolinsky, and P. A. Narayana, “Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry,” Journal of the Neurological Sciences, vol. 282, no. 1-2, pp. 39–46, 2009.
[15]
M. Battaglini, A. Giorgio, M. L. Stromillo et al., “Voxel-wise assessment of progression of regional brain atrophy in relapsing-remitting multiple sclerosis,” Journal of the Neurological Sciences, vol. 282, no. 1-2, pp. 55–60, 2009.
[16]
C. M. Griffin, D. T. Chard, O. Ciccarelli et al., “Diffusion tensor imaging in early relapsing-remitting multiple sclerosis,” Multiple Sclerosis, vol. 7, no. 5, pp. 290–297, 2001.
[17]
K. M. Hasan, R. K. Gupta, R. M. Santos, J. S. Wolinsky, and P. A. Narayana, “Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients,” Journal of Magnetic Resonance Imaging, vol. 21, no. 6, pp. 735–743, 2005.
[18]
M. Wilson, C. R. Tench, P. S. Morgan, and L. D. Blumhardt, “Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability,” Journal of Neurology Neurosurgery and Psychiatry, vol. 74, no. 2, pp. 203–207, 2003.
[19]
S. Cader, H. Johansen-Berg, M. Wylezinska et al., “Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis,” NeuroImage, vol. 36, no. 1, pp. 19–27, 2007.
[20]
O. Ciccarelli, D. J. Werring, C. A. M. Wheeler-Kingshott et al., “Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations,” Neurology, vol. 56, no. 7, pp. 926–933, 2001.
[21]
X. Lin, C. R. Tench, P. S. Morgan, G. Niepel, and C. S. Constantinescu, “'Importance sampling' in MS: use of diffusion tensor tractography to quantify pathology related to specific impairment,” Journal of the Neurological Sciences, vol. 237, no. 1-2, pp. 13–19, 2005.
[22]
O. Ciccarelli, C. A. Wheeler-Kingshott, M. A. McLean et al., “Spinal cord spectroscopy and diffusion-based tractography to assess acute disability in multiple sclerosis,” Brain, vol. 130, no. 8, pp. 2220–2231, 2007.
[23]
A. Giorgio, J. Palace, H. Johansen-Berg et al., “Relationships of brain white matter microstructure with clinical and MR measures in relapsing-remitting multiple sclerosis,” Journal of Magnetic Resonance Imaging, vol. 31, no. 2, pp. 309–316, 2010.
[24]
T. Derfuss, “Personalized medicine in multiple sclerosis: hope or reality?” BMC Medicine, vol. 10, article 116, 2012.
[25]
V. Pravica, M. Markovic, M. Cupic et al., “Multiple sclerosis: individualized disease susceptibility and therapy response,” Biomarkers in Medicine, vol. 7, no. 1, pp. 59–71, 2013.
[26]
S. Hagman, M. Raunio, M. Rossi, P. Dastidar, and I. Elovaara, “Disease-associated inflammatory biomarker profiles in blood in different subtypes of multiple sclerosis: prospective clinical and MRI follow-up study,” Journal of Neuroimmunology, vol. 234, no. 1-2, pp. 141–147, 2011.
[27]
M. Ukkonen, X. Wu, B. Reipert, P. Dastidar, and I. Elovaara, “Cell surface adhesion molecules and cytokine profiles in primary progressive multiple sclerosis,” Multiple Sclerosis, vol. 13, no. 6, pp. 701–707, 2007.
[28]
H. Tumani, H.-P. Hartung, B. Hemmer et al., “Cerebrospinal fluid biomarkers in multiple sclerosis,” Neurobiology of Disease, vol. 35, no. 2, pp. 117–127, 2009.
[29]
M. Krumbholz, H. Faber, F. Steinmeyer et al., “Interferon- increases BAFF levels in multiple sclerosis: implications for B cell autoimmunity,” Brain, vol. 131, no. 6, pp. 1455–1463, 2008.
[30]
J. Kraus, B. S. Kuehne, J. Tofighi et al., “Serum cytokine levels do not correlate with disease activity and severity assessed by brain MRI in multiple sclerosis,” Acta Neurologica Scandinavica, vol. 105, no. 4, pp. 300–308, 2002.
[31]
G. Giovannoni, D. H. Miller, N. A. Losseff et al., “Serum inflammatory markers and clinical/MRI markers of disease progression in multiple sclerosis,” Journal of Neurology, vol. 248, no. 6, pp. 487–495, 2001.
[32]
C. H. Polman, S. C. Reingold, G. Edan et al., “Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald criteria’,” Annals of Neurology, vol. 58, no. 6, pp. 840–846, 2005.
[33]
J. F. Kurtzke, “Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS),” Neurology, vol. 33, no. 11, pp. 1444–1452, 1983.
[34]
U. Hakulinen, A. Brander, P. Ryymin et al., “Repeatability and variation of region-of-interest methods using quantitative diffusion tensor MR imaging of the brain,” BMC Medical Imaging, vol. 12, article 30, 2012.
[35]
S. Rinta, H. Kuusisto, M. Raunio et al., “Apoptosis-related molecules in blood in multiple sclerosis,” Journal of Neuroimmunology, vol. 205, no. 1-2, pp. 135–141, 2008.
[36]
W. Tian, T. Zhu, J. Zhong et al., “Progressive decline in fractional anisotropy on serial DTI examinations of the corpus callosum: a putative marker of disease activity and progression in SPMS,” Neuroradiology, vol. 54, no. 4, pp. 287–297, 2012.
[37]
T. Sigal, M. Shmuel, D. Mark, H. Gil, and A. Anat, “Diffusion tensor imaging of corpus callosum integrity in multiple sclerosis: correlation with disease variables,” Journal of Neuroimaging, vol. 22, no. 1, pp. 33–37, 2012.
[38]
H. Vrenken, P. J. W. Pouwels, J. J. G. Geurts et al., “Altered diffusion tensor in multiple sclerosis normal-appearing brain tissue: cortical diffusion changes seem related to clinical deterioration,” Journal of Magnetic Resonance Imaging, vol. 23, no. 5, pp. 628–636, 2006.
[39]
P. Preziosa, M. A. Rocca, S. Mesaros et al., “Intrinsic damage to the major white matter tracts in patients with different clinical phenotypes of multiple sclerosis: a voxelwise diffusion-tensor MR study,” Radiology, vol. 260, no. 2, pp. 541–550, 2011.
[40]
C. S. Yu, F. C. Lin, Y. Liu, Y. Duan, H. Lei, and K. C. Li, “Histogram analysis of diffusion measures in clinically isolated syndromes and relapsing-remitting multiple sclerosis,” European Journal of Radiology, vol. 68, no. 2, pp. 328–334, 2008.
[41]
A. Gallo, M. Rovaris, R. Riva et al., “Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis,” Archives of Neurology, vol. 62, no. 5, pp. 803–808, 2005.
[42]
E. Raz, M. Cercignani, E. Sbardella et al., “Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and gray matter,” Radiology, vol. 254, no. 1, pp. 227–234, 2010.
[43]
S. Hannoun, M. Bagory, F. Durand-Dubief et al., “Correlation of diffusion and metabolic alterations in different clinical forms of multiple sclerosis,” PLoS One, vol. 7, no. 3, Article ID e32525, 2012.
[44]
P. Tortorella, M. A. Rocca, D. M. Mezzapesa et al., “MRI quantification of gray and white matter damage in patients with early-onset multiple sclerosis,” Journal of Neurology, vol. 253, no. 7, pp. 903–907, 2006.
[45]
S. Bramow, J. M. Frischer, H. Lassmann et al., “Demyelination versus remyelination in progressive multiple sclerosis,” Brain, vol. 133, no. 10, pp. 2983–2998, 2010.
[46]
M. Onu, A. Roceanu, U. Sboto-Frankenstein et al., “Diffusion abnormality maps in demyelinating disease: correlations with clinical scores,” European Journal of Radiology, vol. 81, no. 3, pp. e386–e391, 2012.
[47]
F. Tovar-Moll, I. E. Evangelou, A. W. Chiu et al., “Thalamic involvement and its impact on clinical disability in patients with multiple sclerosis: a diffusion tensor imaging study at 3T,” American Journal of Neuroradiology, vol. 30, no. 7, pp. 1380–1386, 2009.
[48]
S. Hannoun, F. Durand-Dubief, C. Confavreux et al., “Diffusion tensor-MRI evidence for extra-axonal neuronal degeneration in caudate and thalamic nuclei of patients with multiple sclerosis,” American Journal of Neuroradiology, vol. 33, no. 7, pp. 1363–1368, 2012.
[49]
M. Calabrese, F. Rinaldi, D. Seppi et al., “Cortical diffusion-tensor imaging abnormalities in multiple sclerosis: a 3-year longitudinal study,” Radiology, vol. 261, no. 3, pp. 891–898, 2011.
[50]
N. Shiee, P. L. Bazin, K. M. Zackowski et al., “Revisiting brain atrophy and its relationship to disability in multiple sclerosis,” PLoS One, vol. 7, no. 5, Article ID e37049, 2012.
[51]
S. Mesaros, M. A. Rocca, E. Pagani et al., “Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years,” American Journal of Neuroradiology, vol. 32, no. 6, pp. 1016–1020, 2011.
[52]
D. Horakova, T. Kalincik, J. Blahova Dusankova, and O. Dolezal, “Clinical correlates of grey matter pathology in multiple sclerosis,” BMC Neurology, vol. 12, article 10, 2012.
[53]
H. Lassmann, W. Brück, and C. F. Lucchinetti, “The immunopathology of multiple sclerosis: an overview,” Brain Pathology, vol. 17, no. 2, pp. 210–218, 2007.
[54]
M. Sospedra and R. Martin, “Immunology of multiple sclerosis,” Annual Review of Immunology, vol. 23, pp. 683–747, 2005.
[55]
S. Rajasekharan and A. Bar-Or, “From bench to MS bedside: challenges translating biomarker discovery to clinical practice,” Journal of Neuroimmunology, vol. 248, no. 1, pp. 66–72, 2012.
[56]
M. Comabella and M. K. Racke, “New technologies for biomarker discovery in multiple sclerosis,” Journal of Neuroimmunology, vol. 248, no. 1, p. 1, 2012.
[57]
A. P. Kithcart, G. M. Cox, T. Sielecki et al., “A small-molecule inhibitor of macrophage migration inhibitory factor for the treatment of inflammatory disease,” The FASEB Journal, vol. 24, no. 11, pp. 4459–4466, 2010.
[58]
M. H. Holtmann and M. F. Neurath, “Differential TNF-signaling in chronic inflammatory disorders,” Current Molecular Medicine, vol. 4, no. 4, pp. 439–444, 2004.
[59]
F. Zipp, “Apoptosis in multiple sclerosis,” Cell and Tissue Research, vol. 301, no. 1, pp. 163–171, 2000.