全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The RASSF1 Gene and the Opposing Effects of the RASSF1A and RASSF1C Isoforms on Cell Proliferation and Apoptosis

DOI: 10.1155/2013/145096

Full-Text   Cite this paper   Add to My Lib

Abstract:

RASSF1A has been demonstrated to be a tumor suppressor, while RASSF1C is now emerging as a growth promoting protein in breast and lung cancer cells. To further highlight the dual functionality of the RASSF1 gene, we have compared the effects of RASSF1A and RASSF1C on cell proliferation and apoptosis in the presence of TNF-α. Overexpression of RASSF1C in breast and lung cancer cells reduced the effects of TNF-α on cell proliferation, apoptosis, and MST1/2 phosphorylation, while overexpression of RASSF1A had the opposite effect. We also assessed the expression of RASSF1A and RASSF1C in breast and lung tumor and matched normal tissues. We found that RASSF1A mRNA levels are significantly higher than RASSF1C mRNA levels in all normal breast and lung tissues examined. In addition, RASSF1A expression is significantly downregulated in 92% of breast tumors and in 53% of lung tumors. Conversely, RASSF1C was upregulated in 62% of breast tumors and in 47% of lung tumors. Together, these findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor but instead may play a role in stimulating survival in breast and lung cancer cells. 1. Introduction RASSF1A and RASSF1C are the two major isoforms encoded by the RASSF1 gene. RASSF1A is a key tumor suppressor. It is inactivated in the vast majority of human cancers, including breast and lung cancers [1–5]. Recently, we and others demonstrated that the RASSF1C isoform promotes cell proliferation and migration and attenuates apoptosis in breast and lung cancers [6–10]. This suggests that RASSF1C and RASSF1A have opposing effects on cancer cells. This is further supported by recent cohort studies in human lung and pancreatic cancers showing that elevated RASSF1C expression correlates significantly with poor patient survival [11, 12]. To shed more light on this newly emerging concept of RASSF1 dual functionality, we have undertaken studies which compare the impact of the RASSF1A and RASSF1C isoforms on TNF-α-induced apoptosis. RASSF1A is intimately involved in the Hippo and MOAP1/Bax proapoptotic pathways. RASSF1A promotes apoptosis through activation of both MST kinases in the Hippo pathway and activation of Bax in the MOAP/Bax pathway through TNF-α receptor activation. RASSF1A promotes and maintains phosphorylation of MST1, and also activates Bax leading to the induction/activation of downstream of proapoptotic genes such as puma and caspases 3 and 7 genes [13–17]. Like RASSF1A, RASSF1C is able to bind MST1/2 proteins. As such, we reasoned that RASSF1C could potentially interfere with MST1/2 activation and

References

[1]  R. Dammann, C. Li, J. H. Yoon, P. L. Chin, S. Bates, and G. P. Pfeifer, “Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3,” Nature Genetics, vol. 25, no. 3, pp. 315–319, 2000.
[2]  D. G. Burbee, E. Forgacs, S. Z?chbauer-Müller et al., “Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression,” Journal of the National Cancer Institute, vol. 93, no. 9, pp. 691–699, 2001.
[3]  R. Dammann, T. Takahashi, and G. P. Pfeifer, “The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas,” Oncogene, vol. 20, no. 27, pp. 3563–3567, 2001.
[4]  M. D. Vos, C. A. Ellis, A. Bell, M. J. Birrer, and G. J. Clark, “Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 35669–35672, 2000.
[5]  R. Dammann, C. Li, J. H. Yoon, P. L. Chin, S. Bates, and G. P. Pfeifer, “Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21. 3.,” Nature Genetics, vol. 25, no. 3, pp. 315–319, 2000.
[6]  M. E. Reeves, S. W. Baldwin, M. L. Baldwin et al., “Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis,” BMC Cancer, vol. 10, article 562, 2010.
[7]  Y. G. Amaar, M. G. Minera, L. K. Hatran, D. D. Strong, S. Mohan, and M. E. Reeves, “Ras association domain family 1C protein stimulates human lung cancer cell proliferation,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 291, no. 6, pp. L1185–L1190, 2006.
[8]  M. E. Reeves, M. L. Baldwin, R. Aragon et al., “RASSF1C modulates the expression of a stem cell renewal gene, PIWIL1,” BMC Research Notes, vol. 5, article 239, 2012.
[9]  M. E. Reeves, R. J. Aragon, M. Alfakhouri et al., “Ras-association domain family 1C protein enhances ereast tumor growth in vivo,” Cancer Growth and Metastasis, vol. 5, pp. 27–33, 2012.
[10]  E. Estrabaud, I. Lassot, G. Blot et al., “RASSF1C, an isoform of the tumor suppressor RASSF1A, promotes the accumulation of β-catenin by interacting with βTrCP,” Cancer Research, vol. 67, no. 3, pp. 1054–1061, 2007.
[11]  G. Pelosi, C. Fumagalli, M. Trubia et al., “Dual role of RASSF1 as a tumor suppressor and an oncogene in neuroendocrine tumors of the lung,” Anticancer Research, vol. 30, no. 10, pp. 4269–4281, 2010.
[12]  G. Malpeli, E. Amato, M. Dandrea et al., “Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors,” BMC Cancer, vol. 11, article 351, 2011.
[13]  C. J. Foley, H. Freedman, S. L. Choo et al., “Dynamics of RASSF1A/MOAP-1 association with death receptors,” Molecular and Cellular Biology, vol. 28, no. 14, pp. 4520–4535, 2008.
[14]  M. D. Vos, A. Dallol, K. Eckfeld et al., “The RASSF1A tumor suppressor activates bax via MOAP-1,” The Journal of Biological Chemistry, vol. 281, no. 8, pp. 4557–4563, 2006.
[15]  C. Guo, X. Zhang, and G. P. Pfeifer, “The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2,” The Journal of Biological Chemistry, vol. 286, no. 8, pp. 6253–6261, 2011.
[16]  J. Avruch, M. Praskova, S. Ortiz-Vega, M. Liu, and X. F. Zhang, “Nore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinases,” Methods in Enzymology, vol. 407, pp. 290–310, 2005.
[17]  H. J. Oh, K.-K. Lee, S. J. Song et al., “Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis,” Cancer Research, vol. 66, no. 5, pp. 2562–2569, 2006.
[18]  K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the method,” Methods, vol. 25, no. 4, pp. 402–408, 2001.
[19]  M. Yi, J. Yang, X. Chen et al., “RASSF1A suppresses melanoma development by modulating apoptosis and cell-cycle progression,” Journal of Cellular Physiology, vol. 226, no. 9, pp. 2360–2369, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133