Background. Microvascular decompression (MVD) is a widely accepted treatment for neurovascular disorders associated with facial pain and spasm. The endoscope has rapidly become a standard tool in neurosurgical procedures; however, its adoption in lateral approaches to the posterior fossa has been slower. The endoscope is used primarily to assist conventional microscopic techniques. We are interested in developing fully endoscopic approaches to the cerebellopontine angle, and here, we describe our preliminary experience with this procedure for MVD. Methods. A retrospective review of our two-year experience from 2011 to 2012, transitioning from using conventional microscopic techniques to endoscope-assisted microsurgery to fully endoscopic MVD, is provided. We also reviewed our preliminary outcomes during this transition. Results. There was no difference in the surgical duration of these three procedures. In addition, the majority of procedures performed in 2012 were fully endoscopic, suggesting the ease of incorporating this solo tool into practice. Pain outcomes of fully endoscopic MVD appear to be very similar to those of both conventional and endoscope-assisted MVDs. Complications occurred in all groups at equally low rates. Conclusion. Fully endoscopic MVD is both safe and effective. By enhancing visualization of structures within the cerebellopontine angle, endoscopy may prove to be a valuable adjunct or alternative to conventional microscopic approaches. 1. Introduction Microvascular decompression (MVD) is a highly effective surgical treatment of neurovascular disorders associated with facial pain and spasm (e.g., trigeminal neuralgia, hemifacial spasm) [1, 2]. However, failure to relieve symptoms associated with these conditions can occur due to poor visualization of the offending vascular contact at the root entry zone or medial vascular compression [3]. The endoscope has quickly become a standard operative tool in minimally invasive neurosurgery of the sella and ventricular system due to the panoramic views and bright illumination [4–6]. Similarly, advantages of the endoscope in visualizing structures within the cerebellopontine angle (CPA), including nerve cleavage planes and vascular anatomic features, have been noted in addition to smaller exposures and less cerebellar or brainstem retraction than conventional microscopy [7, 8]. The endoscope has been reported to be used as a standard adjunct to conventional MVD in a number of institutions, but rarely as a solo technique [9, 10]. This paper outlines our approach to fully endoscopic MVD
References
[1]
P. J. Jannetta, “Observations on the etiology of trigeminal neuralgia, hemifacial spasm, acoustic nerve dysfunction and glossopharyngeal neuralgia. Definitive microsurgical treatment and results in 117 patients,” Neurochirurgia, vol. 20, no. 5, pp. 145–154, 1977.
[2]
F. G. Barker II, P. J. Jannetta, D. J. Bissonette, M. V. Larkins, and H. D. Jho, “The long-term outcome of microvascular decompression for trigeminal neuralgia,” The New England Journal of Medicine, vol. 334, no. 17, pp. 1077–1083, 1996.
[3]
U. C. P. C. Ugwuanyi and N. D. Kitchen, “The operative findings in re-do microvascular decompression for recurrent trigeminal neuralgia,” British Journal of Neurosurgery, vol. 24, no. 1, pp. 26–30, 2010.
[4]
H.-D. Jho and R. L. Carrau, “Endoscopy assisted transsphenoidal surgery for pituitary adenoma,” Acta Neurochirurgica, vol. 138, no. 12, pp. 1416–1425, 1996.
[5]
F. H. Ebner, A. Koerbel, A. Kirschniak, F. Roser, J. Kaminsky, and M. Tatagiba, “Endoscope-assisted retrosigmoid intradural suprameatal approach to the middle fossa: anatomical and surgical considerations,” European Journal of Surgical Oncology, vol. 33, no. 1, pp. 109–113, 2007.
[6]
N. D. Adappa, K. O. Learned, J. N. Palmer, J. G. Newman, and J. Y. K. Lee, “Radiographic enhancement of the nasoseptal flap does not predict postoperative cerebrospinal fluid leaks in endoscopic skull base reconstruction,” The Laryngoscope, vol. 122, no. 6, pp. 1226–1234, 2012.
[7]
J. Magnan, A. Chays, F. Caces et al., “Contribution of endoscopy of the cerebellopontine angle by retrosigmoid approach. Neuroma and vasculo-nervous compression,” Annales d'Oto-Laryngologie et de Chirurgie Cervico-Faciale, vol. 110, no. 5, pp. 259–265, 1993.
[8]
W. A. King, P. A. Wackym, C. Sen, G. A. Meyer, J. Shiau, and H. Deutsch, “Adjunctive use of endoscopy during posterior fossa surgery to treat cranial neuropathies,” Neurosurgery, vol. 49, no. 1, pp. 108–116, 2001.
[9]
C. Teo, P. Nakaji, and R. J. Mobbs, “Endoscope-assisted microvascular decompression for trigeminal neuralgia: technical case report,” Neurosurgery, vol. 59, no. 4, pp. E489–E490, 2006.
[10]
J. Hae-Dong and H. J. Jho Diana, Microvascular Decompression and the Endoscope. Trigeminal Neuralgia, Oxford University Press, New York, NY, USA, 2010, Edit by: P. Jannetta.
[11]
S. Lang, H. I. Chen, and J. Y. K. Lee, “Endoscopic microvascular decompression: a step-wise operative technique,” ORL, vol. 74, no. 6, pp. 293–298, 2012.
[12]
G. J. Artz, F. J. Hux, M. J. Larouere, D. I. Bojrab, S. Babu, and D. R. Pieper, “Endoscopic vascular decompression,” Otology & Neurotology, vol. 29, no. 7, pp. 995–1000, 2008.
[13]
A. Samii, V. Gerganov, C. Herold, A. Gharabaghi, N. Hayashi, and M. Samii, “Surgical treatment of skull base chondrosarcomas,” Neurosurgical Review, vol. 32, no. 1, pp. 67–75, 2009.
[14]
E. P. De Oliveira, ““Tangential” resection of medial temporal lobe arteriovenous malformations with the orbitozygomatic approach,” Neurosurgery, vol. 55, no. 4, pp. 1010–1011, 2004.
[15]
H. K. Shahinian, J. B. Eby, and M. Ocon, “Fully endoscopic excision of vestibular schwannomas,” Minimally Invasive Neurosurgery, vol. 47, no. 6, pp. 329–332, 2004.