全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Video-Assisted Thoracic Surgery for Tubercular Spondylitis

DOI: 10.1155/2014/963497

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study evaluated the outcome of video-assisted thoracic surgery (VATS) in 9 patients (males = 6, females = 3) with clinico-radiological diagnosis of tubercular spondylitis of the dorsal spine. The mean duration of surgery was 140.88 ± 20.09 minutes, mean blood was 417.77 ± 190.90?mL, and mean duration of postoperative hospital stay was 5.77 ± 0.97 days, Seven patients had a preoperative Grade A neurological involvement, while at the time of final followup the only deficit was Grade D power in 2 patients. In patients without bone graft placement (n = 6), average increase in Kyphosis angle was 16°, while in patients with bone graft placement (n = 3) the deformity remained stationary. At the time of final follow up, fusion was achieved in all patients, the VAS score for back pain improved from a pretreatment score of 8.3 to 2, and the function assessment yielded excellent (n = 4) to good (n = 5) results. In two patients minithoracotomy had to be resorted due to extensive pleural adhesions (n = 1) or difficulty in placement of graft (n = 1). Videoassisted thoracoscopic surgery provides a safe and effective approach in the management of spinal tuberculosis. It has the advantages of decreased blood loss and post operative morbidity with minimal complications. 1. Introduction Tuberculous spondylitis, which is the most common form of skeletal TB (comprising 50% of all cases) and the most serious form of tuberculous lesions in various bones and joints, is reappearing as a problem [1–5]. In the developing world spinal TB is the main cause of kyphosis; 15% of patients treated conservatively have a considerable increase in kyphotic deformity, which in 3% to 5% is more than 60°. A severe kyphotic deformity is a major cosmetic and psychological disturbance in growing child and can result in secondary cardiorespiratory problems and late-onset paraplegia [6–9]. The standard surgical method of decompression of tubercular dorsal spine is either the anterolateral extrapleural or the open transthoracic transpleural approach. Both these approaches are sufficient for adequate decompression and graft placement but are associated with significant morbidity and require a prolonged hospital stay [10]. Video-assisted thoracic surgery (VATS) has developed very rapidly in the last two decades. The use of VATS retains the advantages of anterior spinal surgery and gives a comparable result of spinal deformity correction to that of the open approaches [11]. Although the advent of video-assisted thoracoscopic surgery (VATS) has given a valuable alternative to conventional

References

[1]  S. Rajasekaran, T. K. Shanmugasundaram, R. Prabhakar, J. Dheenadhayalan, A. P. Shetty, and D. K. Shetty, “Tuberculous lesions of the lumbosacral region: a 15-year follow-up of patients treated by ambulant chemotherapy,” Spine, vol. 23, no. 10, pp. 1163–1167, 1998.
[2]  M.-S. Moon, Y.-W. Moon, J.-L. Moon, S.-S. Kim, and D.-H. Sun, “Conservative treatment of tuberculosis of the lumbar and lumbosacral spine,” Clinical Orthopaedics and Related Research, no. 398, pp. 40–49, 2002.
[3]  S. M. Tuli, T. P. Srivastava, B. P. Varma, and G. P. Sinha, “Tuberculosis of spine,” Acta Orthopaedica Scandinavica, vol. 38, no. 4, pp. 445–458, 1967.
[4]  S. M. Tuli, Ed., Tuberculosis of the Skeletal System, Jaypee Brothers Medical, New Delhi, India, 3rd edition, 2004.
[5]  L. B. Reichman, “Tuberculosis elimination. What's to stop us?” International Journal of Tuberculosis and Lung Disease, vol. 1, no. 1, pp. 3–11, 1997.
[6]  M.-S. Moon, “Spine update tuberculosis of the spine: controversies and a new challenge,” Spine, vol. 22, no. 15, pp. 1791–1797, 1997.
[7]  S. M. Tuli, “Severe kyphotic deformity in tuberculosis of the spine,” International Orthopaedics, vol. 19, no. 5, pp. 327–331, 1995.
[8]  M.-S. Moon, I. Kim, Y.-K. Woo, and Y.-O. Park, “Conservative treatment of tuberculosis of the thoracic and lumbar spine in adults and children,” International Orthopaedics, vol. 11, no. 4, pp. 315–322, 1987.
[9]  A. C. M. C. Yau, L. C. S. Hsu, J. P. O'Brien, and A. R. Hodgson, “Tuberculous kyphosis. Correction with spinal osteotomy, halo pelvic distraction, and anterior and posterior fusion,” Journal of Bone and Joint Surgery. American, vol. 56, no. 7, pp. 1419–1434, 1974.
[10]  A. V. Slucky and F. Eismont, “Spinal infections,” in The Textbook of Spinal Surgery, K. H. Bridwell and R. L. Dewald, Eds., pp. 2141–2183, Lippincott Raven, Philadelphia, Pa, USA, 1997.
[11]  H.-K. Wong, H.-T. Hee, Z. Yu, and D. Wong, “Results of thoracoscopic instrumented fusion versus conventional posterior instrumented fusion in adolescent idiopathic scoliosis undergoing selective thoracic fusion,” Spine, vol. 29, no. 18, pp. 2031–2038, 2004.
[12]  A. Jayaswal, B. Upendra, A. Ahmed, B. Chowdhury, and A. Kumar, “Video-assisted thoracoscopic anterior surgery for tuberculous spondylitis,” Clinical Orthopaedics and Related Research, no. 460, pp. 100–107, 2007.
[13]  S. Kapoor, S. Kapoor, M. Agrawal, P. Aggarwal, and B. K. Jain Jr., “Thoracoscopic decompression in Pott's spine and its long-term follow-up,” International Orthopaedics, vol. 36, no. 2, pp. 331–337, 2012.
[14]  K. R. Eck, L. G. Lenke, K. H. Bridwell, L. A. Gilula, C. J. Lashgari, and K. D. Riew, “Radiographic assessment of anterior titanium mesh cages,” Journal of Spinal Disorders, vol. 13, no. 6, pp. 501–509, 2000.
[15]  T.-J. Huang, R. W.-W. Hsu, S.-H. Chen, and H.-P. Liu, “Video-assisted thoracoscopic surgery in managing tuberculous spondylitis,” Clinical Orthopaedics and Related Research, no. 379, pp. 143–153, 2000.
[16]  S. K. Kapoor, P. N. Agarwal, B. K. Jain Jr., and R. Kumar, “Video-assisted thoracoscopic decompression of tubercular spondylitis: clinical evaluation,” Spine, vol. 30, no. 20, pp. E605–610, 2005.
[17]  P. Kandwal, B. Garg, B. Upendra, B. Chowdhury, and A. Jayaswal, “Outcome of minimally invasive surgery in the management of tuberculous spondylitis,” Indian Journal of Orthopaedics, vol. 46, no. 2, pp. 159–164, 2012.
[18]  W. H. Kirkaldy-Willis and T. G. Thomas, “Anterior approaches in the diagnosis and treatment of infections of the vertebral bodies,” The Journal of Bone and Joint Surgery. American, vol. 47, pp. 87–110, 1965.
[19]  J. H. Bates and W. W. Stead, “The history of tuberculosis as a global epidemic,” Medical Clinics of North America, vol. 77, no. 6, pp. 1205–1217, 1993.
[20]  G. Bakalim, “Tuberculous spondylitis, a clinical study with special reference to the significance of spinal fusion and chemotherapy,” Acta Orthopaedica Scandinavica. Supplementum, vol. 47, pp. 1–111, 1960.
[21]  P. O. Newton, M. Marks, F. Faro et al., “Use of video-assisted thoracoscopic surgery to reduce perioperative morbidity in scoliosis surgery,” Spine, vol. 28, no. 20, pp. S249–S254, 2003.
[22]  P. Mangione, F. Vadier, and J. Sénégas, “Thoracoscopy versus thoracotomy for spinal surgery: comparison of two paired series,” Revue de Chirurgie Orthopedique et Reparatrice de l'Appareil Moteur, vol. 85, no. 6, pp. 574–580, 1999.
[23]  R. J. Landreneau, S. R. Hazelrigg, M. J. Mack et al., “Postoperative pain-related morbidity: video-assisted thoracic surgery versus thoracotomy,” Annals of Thoracic Surgery, vol. 56, no. 6, pp. 1285–1289, 1993.
[24]  V. J. Laheri, N. P. Badhe, and G. T. Dewnany, “Single stage decompression, anterior interbody fusion and posterior instrumentation for tuberculous kyphosis of the dorso-lumbar spine,” Spinal Cord, vol. 39, no. 8, pp. 429–436, 2001.
[25]  Medical Research Council, “A 10-year assessment of a controlled trial comparing debridement and anterior spinal fusion in the management of tuberculosis of the spine in patients on standard chemotherapy in Hong Kong. Eighth Report of the Medical Research Council Working Party on Tuberculosis of the Spine,” The Journal of Bone and Joint Surgery. British, vol. 64, pp. 393–398, 1982.
[26]  L. T. Khoo, R. Beisse, and M. Potulski, “Thoracoscopic-assisted treatment of thoracic and lumbar fractures: a series of 371 consecutive cases,” Neurosurgery, vol. 51, no. 5, pp. 104–117, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133