Myeloperoxidase-Dependent LDL Modifications in Bloodstream Are Mainly Predicted by Angiotensin II, Adiponectin, and Myeloperoxidase Activity: A Cross-Sectional Study in Men
The present paradigm of atherogenesis proposes that low density lipoproteins (LDLs) are trapped in subendothelial space of the vascular wall where they are oxidized. Previously, we showed that oxidation is not restricted to the subendothelial location. Myeloperoxidase (MPO), an enzyme secreted by neutrophils and macrophages, can modify LDL (Mox-LDL) at the surface of endothelial cells. In addition we observed that the activation of the endothelial cells by angiotensin II amplifies this process. We suggested that induction of the NADPH oxidase complex was a major step in the oxidative process. Based on these data, we asked whether there was an independent association, in 121 patients, between NADPH oxidase modulators, such as angiotensin II, adiponectin, and levels of circulating Mox-LDL. Our observations suggest that the combination of blood angiotensin II, MPO activity, and adiponectin explains, at least partially, serum Mox-LDL levels. 1. Introduction Atherosclerosis is an inflammatory disease involving a crosstalk between vascular cells, monocytes, proinflammatory cytokines, chemokines, and growth factors [1–3]. The current paradigm of early atherosclerosis claims that low-density lipoprotein (LDL) particles are trapped in the subendothelial space of the vascular wall where they can be oxidized. The precise physiological process for LDL oxidation in vivo is still largely unknown and the occurrence of LDL oxidation outside the lesion sites has not definitively been ruled out yet. Evidence accumulated during the last decade has suggested implication of myeloperoxidase (MPO) in inflammation leading to atherogenesis. MPO is produced by macrophages and neutrophils [4] and via its chlorination activity, MPO produces hypochlorous acid (HOCl) from hydrogen peroxide (H2O2) and chloride anion (Cl?). HOCl can oxidize protein-bound amino acid residues among which the formation of 3-chlorotyrosine is considered as specific of the activity of MPO as the latter is the only human enzyme able to produce HOCl. In the context of atherogenesis, MPO, 3-chlorotyrosine, and MPO-dependent modified LDL (Mox-LDL) have all been detected in human atherosclerotic lesions and in the bloodstream [5–8]. We previously demonstrated that Mox-LDL generation could occur in vitro at the surface of the endothelial cells suggesting that it was not restricted to the subendothelial space in vivo [9]. The triad made up by endothelial cell, circulating LDL and MPO, allowed a synergic mechanism for producing Mox-LDL. The starting point of this reaction is the generation of superoxide anion ( )
References
[1]
L. Lind, “Circulating markers of inflammation and atherosclerosis,” Atherosclerosis, vol. 169, no. 2, pp. 203–214, 2003.
[2]
H. Noels and C. Weber, “catching up with important players in atherosclerosis: type i interferons and neutrophils,” Current Opinion in Lipidology, vol. 22, no. 2, pp. 144–145, 2011.
[3]
C. Weber and H. Noels, “Atherosclerosis: current pathogenesis and therapeutic options,” Nature Medicine, vol. 17, no. 11, pp. 1410–1422, 2011.
[4]
S. J. Klebanoff, “Myeloperoxidase: friend and foe,” Journal of Leukocyte Biology, vol. 77, no. 5, pp. 598–625, 2005.
[5]
A. Daugherty, J. L. Dunn, D. L. Rateri, and J. W. Heinecke, “Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 437–444, 1994.
[6]
E. Malle, G. Marsche, J. Arnhold, and M. J. Davies, “Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid,” Biochimica et Biophysica Acta, vol. 1761, no. 4, pp. 392–415, 2006.
[7]
M. J. Davies, C. L. Hawkins, D. I. Pattison, and M. D. Rees, “Mammalian heme peroxidases: from molecular mechanisms to health implications,” Antioxidants and Redox Signaling, vol. 10, no. 7, pp. 1199–1234, 2008.
[8]
C. Delporte, T. Franck, C. Noyon, et al., “Simultaneous measurement of protein-bound 3-chlorotyrosine and homocitrulline by LC-MS/MS after hydrolysis assisted by microwave: application to the study of myeloperoxidase activity during hemodialysis,” Talanta, vol. 99, pp. 603–609, 2012.
[9]
K. Zouaoui Boudjeltia, N. Moguilevsky, I. Legssyer et al., “Oxidation of low density lipoproteins by myeloperoxidase at the surface of endothelial cells: an additional mechanism to subendothelium oxidation,” Biochemical and Biophysical Research Communications, vol. 325, no. 2, pp. 434–438, 2004.
[10]
K. Boudjeltia, B. Faraut, M. J. Esposito et al., “Temporal dissociation between myeloperoxidase (MPO)-modified LDL and MPO elevations during chronic sleep restriction and recovery in healthy young men,” PLoS ONE, vol. 6, no. 11, Article ID e28230, 2011.
[11]
S. Higuchi, H. Ohtsu, H. Suzuki, H. Shirai, G. D. Frank, and S. Eguchi, “Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology,” Clinical Science, vol. 112, no. 7-8, pp. 417–428, 2007.
[12]
C. Roberto, P. Pasquale, D. S. Serena et al., “Atorvastatin inhibits oxidative stress via adiponectin-mediated NADPH oxidase down-regulation in hypercholesterolemic patients,” Atherosclerosis, vol. 213, no. 1, pp. 225–234, 2010.
[13]
T. Roumeguére, K. Z. Boudjeltia, C. Hauzeur, C. Schulman, M. Vanhaeverbeek, and E. Wespes, “Is there a rationale for the chronic use of phosphodiesterase-5 inhibitors for lower urinary tract symptoms secondary to benign prostatic hyperplasia?” BJU International, vol. 104, no. 4, pp. 511–517, 2009.
[14]
T. Franck, S. Kohnen, K. Z. Boudjeltia et al., “A new easy method for specific measurement of active myeloperoxidase in human biological fluids and tissue extracts,” Talanta, vol. 80, no. 2, pp. 723–729, 2009.
[15]
C. Delporte, P. van Antwerpen, L. Vanhamme, T. Roumeguere, and K. Zouaoui Boudjeltia, “Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies,” Mediators Inflammation, vol. 2013, Article ID 971579, 18 pages, 2013.
[16]
M. Vaes, K. Z. Boudjeltia, P. van Antwerpen, et al., “Low-density lipoprotein oxidation by myeloperoxidase occurs in the blood circulation during hemodialysis,” Atherosclerosis, vol. 7, Proceedings of the 4th international symposium on Th-P15:146, no. 3, p. 525, 2006.
[17]
H. Li, Z. Cao, D. R. Moore, et al., “Microbicidal activity of vascular peroxidase 1 in human plasma via generation of hypochlorous acid,” Infection and Immunity, vol. 80, no. 7, pp. 2528–2537, 2012.
[18]
R. Shi, C. Hu, Q. Yuan et al., “Involvement of vascular peroxidase 1 in angiotensin II-induced vascular smooth muscle cell proliferation,” Cardiovascular Research, vol. 91, no. 1, pp. 27–36, 2011.