全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clearance of Apoptotic Cells by Macrophages Induces Regulatory Phenotype and Involves Stimulation of CD36 and Platelet-Activating Factor Receptor

DOI: 10.1155/2013/950273

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phagocytosis of apoptotic cells (efferocytosis) induces macrophage differentiation towards a regulatory phenotype (IL-10high/IL-12p40low). CD36 is involved in the recognition of apoptotic cells (AC), and we have shown that the platelet-activating factor receptor (PAFR) is also involved. Here, we investigated the contribution of PAFR and CD36 to efferocytosis and to the establishment of a regulatory macrophage phenotype. Mice bone marrow-derived macrophages were cocultured with apoptotic thymocytes, and the phagocytic index was determined. Blockage of PAFR with antagonists or CD36 with specific antibodies inhibited the phagocytosis of AC (~70–80%). Using immunoprecipitation and confocal microscopy, we showed that efferocytosis increased the CD36 and PAFR colocalisation in the macrophage plasma membrane; PAFR and CD36 coimmunoprecipitated with flotillin-1, a constitutive lipid raft protein, and disruption of these membrane microdomains by methyl-β-cyclodextrin reduced AC phagocytosis. Efferocytosis induced a pattern of cytokine production, IL-10high/IL-12p40low, that is, characteristic of a regulatory phenotype. LPS potentiated the efferocytosis-induced production of IL-10, and this was prevented by blocking PAFR or CD36. It can be concluded that phagocytosis of apoptotic cells engages CD36 and PAFR, possibly in lipid rafts, and this is required for optimal efferocytosis and the establishment of the macrophage regulatory phenotype. 1. Introduction Clearance of apoptotic cells (AC) by macrophages, also called efferocytosis, plays a central role in tissue homeostasis, and the impaired clearance of altered cells has been associated with the development of autoimmune and chronic inflammatory diseases [1]. Macrophages can acquire distinct phenotypes depending on the stimulus. M1 or classically activated macrophages are induced by the recognition of PAMPs (pathogen associated molecular patterns) and by proinflammatory cytokines. These cells exhibit high microbicidal activity and induce inflammation. In contrast, M2 macrophages produce anti-inflammatory and tissue remodelling cytokines and can be divided into subtypes according to the stimulus; the alternatively activated macrophages are induced by Th2 cytokines, and the regulatory macrophages are induced by anti-inflammatory cytokines, immune complexes, apoptotic cells, and oxidised lipids, among other stimuli [2, 3]. The first evidence that efferocytosis induces a suppressor phenotype came from the studies of Fadok et al. [4]. The authors showed that the addition of apoptotic cells to macrophages inhibited the

References

[1]  D. Korns, S. C. Frasch, R. Fernandez-Boyanapalli, P. M. Henson, and D. L. Bratton, “Modulation of macrophage efferocytosis in inflammation,” Frontiers in Immunology, vol. 2, article 57, 2011.
[2]  D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008.
[3]  J. P. Edwards, X. Zhang, K. A. Frauwirth, and D. M. Mosser, “Biochemical and functional characterization of three activated macrophage populations,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1298–1307, 2006.
[4]  V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, “Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF,” Journal of Clinical Investigation, vol. 101, no. 4, pp. 890–898, 1998.
[5]  A. A. Filardy, D. R. Pires, M. P. Nunes et al., “Pro-inflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages,” Journal of Immunology, vol. 185, no. 4, pp. 2044–2050, 2010.
[6]  S. Jancar and R. Chammas, “PAF receptor and tumour growth,” Bioactive Lipids in Cancer. In press.
[7]  A. L. Bachi, L. C. Dos Santos, S. Nonogaki, S. Jancar, and M. G. Jasiulionis, “Apoptotic cells contribute to melanoma progression and this effect is partially mediated by the platelet-activating factor receptor,” Mediators of Inflammation, vol. 2012, Article ID 610371, 6 pages, 2012.
[8]  S. I. de Oliveira, P. D. Fernandes, J. G. Amarante Mendes, and S. Jancar, “Phagocytosis of apoptotic and necrotic thymocytes is inhibited by PAF-receptor antagonists and affects LPS-induced COX-2 expression in murine macrophages,” Prostaglandins and Other Lipid Mediators, vol. 80, no. 1-2, pp. 62–73, 2006.
[9]  R. P. Sahu, I. Petrache, M. J. Van Demark et al., “Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet-activating factor agonists,” The Journal of Immunology, vol. 190, no. 5, pp. 2447–2454, 2013.
[10]  R. P. Sahu, M. J. Turner, S. C. DaSilva et al., “The environmental stressor ultraviolet B radiation inhibits murine antitumor immunity through its ability to generate platelet-activating factor agonists,” Carcinogenesis, vol. 33, no. 7, pp. 1360–1367, 2012.
[11]  Y. I. Miller, S.-H. Choi, P. Wiesner et al., “Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity,” Circulation Research, vol. 108, no. 2, pp. 235–248, 2011.
[12]  V. V. Kunjathoor, M. Febbraio, E. A. Podrez et al., “Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49982–49988, 2002.
[13]  F. J. O. Rios, M. Gidlund, and S. Jancar, “Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages,” Cellular Physiology and Biochemistry, vol. 27, no. 3-4, pp. 363–372, 2011.
[14]  F. J. O. Rios, M. M. Koga, M. Ferracini, and S. Jancar, “Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation,” PLoS ONE, vol. 7, no. 5, Article ID e36632, 2012.
[15]  J. Q. Davies and S. Gordon, “Isolation and culture of murine macrophages,” Methods in Molecular Biology, vol. 290, pp. 91–103, 2005.
[16]  B. Hu, A. Punturieri, J. Todt, J. Sonstein, T. Polak, and J. L. Curtis, “Recognition and phagocytosis of apoptotic T cells by resident murine tissue macrophages require multiple signal transduction events,” Journal of Leukocyte Biology, vol. 71, no. 5, pp. 881–889, 2002.
[17]  S. I. de Oliveira, L. N. S. Andrade, A. C. Onuchic et al., “Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy,” BMC Cancer, vol. 10, article 200, 2010.
[18]  C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7, pp. 671–675, 2012.
[19]  S. Bolte and F. P. Cordelières, “A guided tour into subcellular colocalization analysis in light microscopy,” Journal of Microscopy, vol. 224, no. pt 3, pp. 213–232, 2006.
[20]  A. Auriac, A. Willemetz, and F. Canonne-Hergaux, “Lipid raft-dependent endocytosis: A new route for hepcidin-mediated regulation of ferroportin in macrophages,” Haematologica, vol. 95, no. 8, pp. 1269–1277, 2010.
[21]  D. Lingwood and K. Simons, “Lipid rafts as a membrane-organizing principle,” Science, vol. 327, no. 5961, pp. 46–50, 2010.
[22]  M. Triantafilou, F. G. J. Gamper, P. M. Lepper et al., “Lipopolysaccharides from atherosclerosis-associated bacteria antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid rafts and trigger TLR2-induced inflammatory responses in human vascular endothelial cells,” Cellular Microbiology, vol. 9, no. 8, pp. 2030–2039, 2007.
[23]  Y. Zeng, N. Tao, K.-N. Chung, J. E. Heuser, and D. M. Lublin, “Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require caveolin-1,” Journal of Biological Chemistry, vol. 278, no. 46, pp. 45931–45936, 2003.
[24]  C. Poisson, S. Rollin, S. Véronneau et al., “Caveolae facilitate but are not essential for platelet-activating factor-mediated calcium mobilization and extracellular signal-regulated kinase activation,” Journal of Immunology, vol. 183, no. 4, pp. 2747–2757, 2009.
[25]  S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003.
[26]  S. E. Elcombe, S. Naqvi, M. W. Van Den Bosch et al., “Dectin-1 regulates IL-10 production via a MSK1/2 and CREB dependent pathway and promotes the induction of regulatory macrophage markers,” PLoS ONE, vol. 8, no. 3, Article ID e60086, 2013.
[27]  K. F. MacKenzie, K. Clark, S. Naqvi et al., “PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway,” The Journal of Immunology, vol. 190, no. 2, pp. 565–577, 2013.
[28]  S. Kim, K. B. Elkon, and X. Ma, “Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells,” Immunity, vol. 21, no. 5, pp. 643–653, 2004.
[29]  J. S. Gerber and D. M. Mosser, “Reversing lipopolysaccharide toxicity by ligating the macrophage Fcγ receptors,” Journal of Immunology, vol. 166, no. 11, pp. 6861–6868, 2001.
[30]  B. D. Fleming and D. M. Mosser, “Regulatory macrophages: Setting the threshold for therapy,” European Journal of Immunology, vol. 41, no. 9, pp. 2498–2502, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133