Retinal neuropathy is an early event in the development of diabetic retinopathy. One of the potential enzymes that are activated by oxidative stress in the diabetic retina is poly (ADP-ribose) polymerase (PARP). We investigated the effect of the PARP inhibitor 1,5-isoquinolinediol on the expression of the neurodegeneration mediators and markers in the retinas of diabetic rats. After two weeks of streptozotocin-induced diabetes, rats were treated with 1,5-isoquinolinediol (3?mg/kg/day). After 4 weeks of diabetes, the retinas were harvested and the levels of reactive oxygen species (ROS) were determined fluorometrically and the expressions of PARP, phosporylated-ERK1/2, BDNF, synaptophysin, glutamine synthetase (GS), and caspase-3 were determined by Western blot analysis. Retinal levels of ROS, PARP-1/2, phosphorylated ERK1/2, and cleaved caspase-3 were significantly increased, whereas the expressions of BDNF synaptophysin and GS were significantly decreased in the retinas of diabetic rats, compared to nondiabetic rats. Administration of 1,5-isoquinolinediol did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of PARP, ROS, ERK1/2 phosphorylation, and cleaved caspase-3 and downregulation of BDNF, synaptophysin, and GS. These findings suggest a beneficial effect of the PARP inhibitor in increasing neurotrophic support and ameliorating early retinal neuropathy induced by diabetes. 1. Introduction Diabetes is a metabolic disorder characterized by hyperglycemia and often leads to numerous microvascular complications, including retinopathy. Diabetic retinopathy (DR) is a multifactorial disease, and persistent hyperglycemia appears to be a major contributor to its development. Recent evidence suggests that diabetic retinopathy is a progressive neurodegenerative disease as evidenced by the presence of apoptotic cells in all retinal layers. Activation of caspase-3 is part of the mechanism of apoptosis. Visual dysfunction is initiated early after the onset of diabetes and progresses independently of the vascular lesions [1–4]. The exact molecular mechanisms which contribute to development of diabetes-induced retinal neuropathy remain largely unknown. Reactive oxygen species (ROS) production is increased in the retina in diabetes, and it is considered as one of the major contributors of retinal metabolic abnormalities postulated to be involved in the development of diabetic retinopathy. Administration of antioxidants to diabetic rats protects the retina from oxidative damage, and also the
References
[1]
M. Seki, T. Tanaka, H. Nawa et al., “Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells,” Diabetes, vol. 53, no. 9, pp. 2412–2419, 2004.
[2]
A. J. Barber, “A new view of diabetic retinopathy: a neurodegenerative disease of the eye,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 2, pp. 283–290, 2003.
[3]
M. Sasaki, Y. Ozawa, T. Kurihara et al., “Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes,” Diabetologia, vol. 53, no. 5, pp. 971–979, 2010.
[4]
R. Simó, C. Hernández, and European consortium for the early treatment of diabetic retinopathy (EUROCONDOR), “Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications,” British Journal of Ophthalmology, vol. 96, no. 10, pp. 1285–1290, 2012.
[5]
J. M. Santos, G. Mohammad, Q. Zhong, and R. A. Kowluru, “Diabetic retinopathy, superoxide damage and antioxidants,” Current Pharmaceutical Biotechnology, vol. 12, no. 3, pp. 352–361, 2011.
[6]
R. A. Kowluru and M. Kanwar, “Effects of curcumin on retinal oxidative stress and inflammation in diabetes,” Nutrition and Metabolism, vol. 4, article 8, 2007.
[7]
R. A. Kowluru, B. Menon, and D. L. Gierhart, “Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats,” Investigative Ophthalmology and Visual Science, vol. 49, no. 4, pp. 1645–1651, 2008.
[8]
G. Mohammad and R. A. Kowluru, “Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction,” Laboratory Investigation, vol. 90, no. 9, pp. 1365–1372, 2010.
[9]
H. Zong, M. Ward, and A. W. Stitt, “AGEs, RAGE, and diabetic retinopathy,” Current Diabetes Reports, vol. 11, no. 4, pp. 244–252, 2011.
[10]
K. C. Silva, M. A. B. Rosales, S. K. Biswas, J. B. L. De Faria, and J. M. L. De Faria, “Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes,” Diabetes, vol. 58, no. 6, pp. 1382–1390, 2009.
[11]
M. Seki, H. Nawa, T. Fukuchi, H. Abe, and N. Takei, “BDNF is upregulated by postnatal development and visual experience: quantitative and immunohistochemical analyses of BDNF in the rat retina,” Investigative Ophthalmology and Visual Science, vol. 44, no. 7, pp. 3211–3218, 2003.
[12]
K. R. G. Martin, H. A. Quigley, D. J. Zack et al., “Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model,” Investigative Ophthalmology and Visual Science, vol. 44, no. 10, pp. 4357–4365, 2003.
[13]
D. K. Binder and H. E. Scharfman, “Brain-derived neurotrophic factor,” Growth Factors, vol. 22, no. 3, pp. 123–131, 2004.
[14]
T. C. Nag and S. Wadhwa, “Differential expression of syntaxin-1 and synaptophysin in the developing and adult human retina,” Journal of Biosciences, vol. 26, no. 2, pp. 179–191, 2001.
[15]
T. Kivela, A. Tarkkanen, and I. Virtanen, “Synaptophysin in the human retina and retinoblastoma. An immunohistochemical and Western blotting study,” Investigative Ophthalmology and Visual Science, vol. 30, no. 2, pp. 212–219, 1989.
[16]
S. C. Massey, “Cell types using glutamate as a neurotransmitter in the vertebrate retina,” Progress in Retinal Research, vol. 9, pp. 399–425, 1990.
[17]
E. Lieth, K. F. LaNoue, D. A. Antonetti, and M. Ratz, “Diabetes reduces glutamate oxidation and glutamine synthesis in the retina,” Experimental Eye Research, vol. 70, no. 6, pp. 723–730, 2000.
[18]
Y. Xu-hui, Z. Hong, W. Yu-hong, L. Li-juan, T. Yan, and L. Ping, “Time-dependent reduction of glutamine synthetase in retina of diabetic rats,” Experimental Eye Research, vol. 89, no. 6, pp. 967–971, 2009.
[19]
E. Lieth, A. J. Barber, B. Xu et al., “Glial reactivity and impaired glutamate metabolism in short- term experimental diabetic retinopathy,” Diabetes, vol. 47, pp. 815–820, 1998.
[20]
R. A. Kowluru, R. L. Engerman, G. L. Case, and T. S. Kern, “Retinal glutamate in diabetes and effect of antioxidants,” Neurochemistry International, vol. 38, no. 5, pp. 385–390, 2001.
[21]
Y. Ozawa, T. Kurihara, M. Sasaki et al., “Neural degeneration in the retina of the streptozotocin-induced type 1 diabetes model,” Experimental Diabetes Research, vol. 2011, Article ID 108328, 2011.
[22]
L. Zheng, C. Szabó, and T. S. Kern, “Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-κB,” Diabetes, vol. 53, no. 11, pp. 2960–2967, 2004.
[23]
R. Sugawara, T. Hikichi, N. Kitaya et al., “Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats,” Current Eye Research, vol. 29, no. 1, pp. 11–16, 2004.
[24]
X. Qin, Z. Zhang, H. Xu, and Y. Wu, “Notch signaling protects retina from nuclear factor-κB- and poly-ADP-ribose-polymerase-mediated apoptosis under high-glucose stimulation,” Acta Biochimica et Biophysica Sinica, vol. 43, no. 9, pp. 703–711, 2011.
[25]
I. G. Obrosova and U. A. Julius, “Role for poly(ADP-ribose) polymerase activation in diabetic nephropathy, neuropathy and retinopathy,” Current Vascular Pharmacology, vol. 3, no. 3, pp. 267–283, 2005.
[26]
I. G. Obrosova, V. R. Drel, P. Pacher et al., “Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited,” Diabetes, vol. 54, no. 12, pp. 3435–3441, 2005.
[27]
S. Lupachyk, H. Shevalye, Y. Maksimchyk, V. R. Drel, and I. G. Obrosova, “PARP inhibition alleviates diabetes-induced systemic oxidative stress and neural tissue 4-hydroxynonenal adduct accumulation: correlation with peripheral nerve function,” Free Radical Biology and Medicine, vol. 50, no. 10, pp. 1400–1409, 2011.
[28]
I. G. Obrosova, A. G. Minchenko, R. N. Frank et al., “Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression,” International journal of molecular medicine, vol. 14, no. 1, pp. 55–64, 2004.
[29]
B. Dasari, J. R. Prasanthi, G. Marwarha, B. B. Singh, and O. Ghribi, “Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina,” BMC Ophthalmology, vol. 11, no. 1, article 22, 2011.
[30]
M. A. Cotter and N. E. Cameron, “Effect of the NAD(P)H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats,” Life Sciences, vol. 73, no. 14, pp. 1813–1824, 2003.
[31]
P. Jagtap and C. Szabo, “Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors,” Nature Reviews Drug Discovery, vol. 4, no. 5, pp. 421–440, 2005.
[32]
I. G. Obrosova, V. R. Drel, A. K. Kumagai, C. Szábo, P. Pacher, and M. J. Stevens, “Early diabetes-induced biochemical changes in the retina: comparison of rat and mouse models,” Diabetologia, vol. 49, no. 10, pp. 2525–2533, 2006.
[33]
Z. Zheng, H. Chen, H. Wang et al., “Improvement of retinal vascular injury in diabetic rats by statins is associated with the inhibition of mitochondrial reactive oxygen species pathway mediated by peroxisome proliferator-activated receptor γ coactivator 1α,” Diabetes, vol. 59, no. 9, pp. 2315–2325, 2010.
[34]
Z. H. Wan, W. Z. Li, Y. Z. Li et al., “Poly(ADP-Ribose) polymerase inhibition improves erectile function in diabetic rats,” Journal of Sexual Medicine, vol. 8, no. 4, pp. 1002–1014, 2011.
[35]
C. Szabó, A. Biser, R. Benko, E. B?ttinger, and K. Suszták, “Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice,” Diabetes, vol. 55, no. 11, pp. 3004–3012, 2006.
[36]
M. S. Ola, M. I. Nawaz, H. A. Khan, and A. S. Alhomida, “Neurodegeneration and neuroprotection in diabetic retinopathy,” International Journal of Molecular Sciences, vol. 14, no. 2, pp. 2559–2572, 2013.
[37]
X. Ye, G. Xu, Q. Chang et al., “ERK1/2 signaling pathways involved in VEGF release in diabetic rat retina,” Investigative Ophthalmology and Visual Science, vol. 51, no. 10, pp. 5226–5233, 2010.
[38]
G. Mohammad, M. Siddiquei, M. Imtiaz Nawaz, and A. M. Abu El-Asrar, “The ERK1/2 inhibitor U0126 attenuates diabetes-induced upregulation of MMP-9 and biomarkers of inflammation in the retina,” Journal of Diabetes Research, vol. 2013, Article ID 658548, 9 pages, 2013.
[39]
M. Domercq, S. Mato, F. N. Soria, M. V. Sánchez-gómez, E. Alberdi, and C. Matute, “Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes,” Glia, vol. 61, no. 3, pp. 383–393, 2013.
[40]
T. T. T. Nguyen, E. Tran, T. H. Nguyen, P. T. Do, T. H. Huynh, and H. Huynh, “The role of activated MEK-ERK pathway in quercetin-induced growth inhibition and apoptosis in A549 lung cancer cells,” Carcinogenesis, vol. 25, no. 5, pp. 647–659, 2004.
[41]
J. Liu, W. Mao, B. Ding, and C.-S. Liang, “ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes,” The American Journal of Physiology: Heart and Circulatory Physiology, vol. 295, no. 5, pp. H1956–H1965, 2008.
[42]
J. Yang, Y. Han, H. Sun et al., “(-)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings,” Journal of Agricultural and Food Chemistry, vol. 59, no. 21, pp. 11483–11490, 2011.
[43]
L. Stenberg, M. Kanje, L. M?rtensson, and L. B. Dahlin, “Injury-induced activation of ERK 1/2 in the sciatic nerve of healthy and diabetic rats,” NeuroReport, vol. 22, no. 2, pp. 73–77, 2011.
[44]
G. Mohammad and R. A. Kowluru, “Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9,” Journal of Cellular Physiology, vol. 227, no. 3, pp. 1052–1061, 2012.
[45]
B. Veres, B. Radnai, F. Gallyas Jr. et al., “Regulation of kinase cascades and transcription factors by a poly(ADP-ribose) polymerase-1 inhibitor, 4-hydroxyquinazoline, in lipopolysaccharide-induced inflammation in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 310, no. 1, pp. 247–255, 2004.
[46]
C. éthier, Y. Labelle, and G. G. Poirier, “PARP-1-induced cell death through inhibition of the MEK/ERK pathway in MNNG-treated HeLa cells,” Apoptosis, vol. 12, no. 11, pp. 2037–2049, 2007.
[47]
Y. Luo and D. B. DeFranco, “Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress,” Journal of Biological Chemistry, vol. 281, no. 24, pp. 16436–16442, 2006.
[48]
T. P. Rygiel, A. E. Mertens, K. Strumane, R. van der Kammen, and J. G. Collard, “The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation,” Journal of Cell Science, vol. 121, no. 8, pp. 1183–1192, 2008.
[49]
X. Wang, Z. Wang, Y. Yao et al., “Essential role of ERK activation in neurite outgrowth induced by α-lipoic acid,” Biochimica et Biophysica Acta, vol. 1813, no. 5, pp. 827–838, 2011.