The mononuclear phagocyte system regulates tissue homeostasis as well as all phases of tissue injury and repair. To do so changing tissue environments alter the phenotype of tissue macrophages to assure their support for sustaining and amplifying their respective surrounding environment. Interferon-regulatory factors are intracellular signaling elements that determine the maturation and gene transcription of leukocytes. Here we discuss how several among the 9 interferon-regulatory factors contribute to macrophage polarization. 1. Introduction During development mononuclear phagocyte progenitors populate most tissues where they differentiate into transcriptionally and functionally diverse phenotypes [1–3]; for example, bone marrow, liver, and lung harbor macrophages with an enormous capacity to clear airborne particles, gut-derived pathogens, or cell nuclei expelled from erythroblasts, respectively [4]. In contrast, skin, kidney, and brain host a dense network of dendritic cells [4, 5]. Upon tissue injury M-CSF drives resident mononuclear phagocyte to proliferate [6] or circulating monocytes recruit to the site of injury. It is the local microenvironment that then determines mononuclear phagocyte polarization to distinct phenotypes, which can vary between disorders or between the different stages of a disease process [7]. Several factors mediate mononuclear phagocyte polarization, as being mostly described by in vitro experiments [7, 8]. However, attempts to translate this simplistic model to disease states in vivo often failed to cover all aspects of heterogeneous and changing tissue environments. For example, ischemia-reperfusion injury induces transient sterile inflammation because dying tissue cells release damage-associated molecular patterns (DAMPs) that polarize macrophages toward a classically activated M1-like phenotype [9, 10]. This process is associated with NF-κB and STAT1 pathway activation [2]. Macrophages apoptosis or their phenotype switches towards alternatively activated, M2-like macrophages that produce IL-10 and TGF-β, induce resolution of inflammation, and enforce tissue regeneration [11–15]. Failure of this phenotype switch leads to persistent tissue inflammation, atrophy, and fibrosis [16]. The uptake of neutrophils, epithelium-derived alarmins, and Th2 cytokines IL-4 and IL-13 supports this phenotype switch [11]. As disease processes do not always occur in a serial manner, concomitant proinflammatory and anti-inflammatory macrophages infiltrates often populate organs affected by persistent injury, for example, in slowly
References
[1]
F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad, and K. Ley, “Development of monocytes, macrophages, and dendritic cells,” Science, vol. 327, no. 5966, pp. 656–661, 2010.
[2]
S. Gordon and P. R. Taylor, “Monocyte and macrophage heterogeneity,” Nature Reviews Immunology, vol. 5, no. 12, pp. 953–964, 2005.
[3]
E. L. Gautier, T. Shay, J. Miller, et al., “Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages,” Nature Immunology, vol. 13, no. 11, pp. 1118–1128, 2012.
[4]
T. A. Wynn, A. Chawla, and J. W. Pollard, “Macrophage biology in development, homeostasis and disease,” Nature, vol. 496, no. 7446, pp. 445–455, 2013.
[5]
T. J. Soos, T. N. Sims, L. Barisoni et al., “CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney,” Kidney International, vol. 70, no. 3, pp. 591–596, 2006.
[6]
S. J. Jenkins, D. Ruckerl, P. C. Cook et al., “Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation,” Science, vol. 332, no. 6035, pp. 1284–1288, 2011.
[7]
P. J. Murray and T. A. Wynn, “Protective and pathogenic functions of macrophage subsets,” Nature Reviews Immunology, vol. 11, no. 11, pp. 723–737, 2011.
[8]
A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” The Journal of Clinical Investigation, vol. 122, no. 3, pp. 787–795, 2012.
[9]
K. L. Rock, E. Latz, F. Ontiveros, and H. Kono, “The sterile inflammatory response,” Annual Review of Immunology, vol. 28, pp. 321–342, 2010.
[10]
S. Swaminathan and M. D. Griffin, “First responders: understanding monocyte-lineage traffic in the acutely injured kidney,” Kidney International, vol. 74, no. 12, pp. 1509–1511, 2008.
[11]
S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003.
[12]
H.-J. Anders and M. Ryu, “Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis,” Kidney International, vol. 80, no. 9, pp. 915–925, 2011.
[13]
M.-G. Kim, C. Su Boo, Y. Sook Ko et al., “Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury,” Nephrology Dialysis Transplantation, vol. 25, no. 9, pp. 2908–2921, 2010.
[14]
S. Lee, S. Huen, H. Nishio et al., “Distinct macrophage phenotypes contribute to kidney injury and repair,” Journal of the American Society of Nephrology, vol. 22, no. 2, pp. 317–326, 2011.
[15]
M. Z. Zhang, B. Yao, S. Yang, et al., “CSF-1 signaling mediates recovery from acute kidney injury,” The Journal of Clinical Investigation, vol. 122, no. 12, pp. 4519–4532, 2012.
[16]
M. Lech, R. Gr?bmayr, M. Ryu, et al., “Macrophage phenotype controls longterm AKI outcomes-kidney regeneration versus atrophy,” Journal of the American Society of Nephrology. In press.
[17]
S. Dehmel, S. Wang, C. Schmidt et al., “Chemokine receptor Ccr5 deficiency induces alternative macrophage activation and improves long-term renal allograft outcome,” European Journal of Immunology, vol. 40, no. 1, pp. 267–278, 2010.
[18]
J. S. Duffield, S. J. Forbes, C. M. Constandinou et al., “Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair,” The Journal of Clinical Investigation, vol. 115, no. 1, pp. 56–65, 2005.
[19]
T. Tamura, H. Yanai, D. Savitsky, and T. Taniguchi, “The IRF family transcription factors in immunity and oncogenesis,” Annual Review of Immunology, vol. 26, pp. 535–584, 2008.
[20]
C. R. Escalante, J. Yie, D. Thanos, and A. K. Aggarwal, “Structure of IRF-1 with bound DNA reveals determinants of interferon regulation,” Nature, vol. 391, no. 6662, pp. 103–106, 1998.
[21]
M. Lohoff and T. W. Mak, “Roles of interferon-regulatory factors in T-helper-cell differentiation,” Nature Reviews Immunology, vol. 5, no. 2, pp. 125–135, 2005.
[22]
A. Takaoka, T. Tamura, and T. Taniguchi, “Interferon regulatory factor family of transcription factors and regulation of oncogenesis,” Cancer Science, vol. 29, no. 3, pp. 467–478, 2008.
[23]
T. Matsuyama, T. Kimura, M. Kitagawa et al., “Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development,” Cell, vol. 75, no. 1, pp. 83–97, 1993.
[24]
M. Miyamoto, T. Fujita, Y. Kimura et al., “Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-β gene regulatory elements,” Cell, vol. 54, no. 6, pp. 903–913, 1988.
[25]
T. Fujita, Y. Kimura, M. Miyamoto, E. L. Barsoumian, and T. Taniguchi, “Induction of endogenous IFN-α and IFN-β genes by a regulatory transcription factor, IRF-1,” Nature, vol. 337, no. 6204, pp. 270–272, 1989.
[26]
F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, “Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression,” Journal of Immunology, vol. 177, no. 10, pp. 7303–7311, 2006.
[27]
H. Negishi, Y. Fujita, H. Yanai et al., “Evidence for licensing of IFN-γ-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 41, pp. 15136–15141, 2006.
[28]
J. Liu, S. Cao, L. M. Herman, and X. Ma, “Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-gamma-primed IL-12 production by IFN regulatory factor 1,” The Journal of Experimental Medicine, vol. 198, no. 8, pp. 1265–1276, 2003.
[29]
R. Lin and J. Hiscott, “A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity,” Molecular and Cellular Biochemistry, vol. 191, no. 1-2, pp. 169–180, 1999.
[30]
M. Carey, “The enhanceosome and transcriptional synergy,” Cell, vol. 92, no. 1, pp. 5–8, 1998.
[31]
J. C. G. Blanco, C. Contursi, C. A. Salkowski, D. L. DeWitt, K. Ozato, and S. N. Vogel, “Interferon regulatory factor (IRF)-1 and IRF-2 regulate interferon γ- dependent cyclooxygenase 2 expression,” The Journal of Experimental Medicine, vol. 191, no. 12, pp. 2131–2144, 2000.
[32]
J. Sanceau, T. Kaisho, T. Hirano, and J. Wietzerbin, “Triggering of the human interleukin-6 gene by interferon-γ and tumor necrosis factor-α in monocytic cells involves cooperation between interferon regulatory factor-1, NFκB, and Sp1 transcription factors,” The Journal of Biological Chemistry, vol. 270, no. 46, pp. 27920–27931, 1995.
[33]
K. Nakagawa and H. Yokosawa, “PIAS3 induces SUMO-1 modification and transcriptional repression of IRF-1,” FEBS Letters, vol. 530, no. 1–3, pp. 204–208, 2002.
[34]
M. Q. Nhu, N. Cuesta, and S. N. Vogel, “Transcriptional regulation of lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) expression in murine macrophages: role of interferon regulatory factors 1 (IRF-1) and 2 (IRF-2),” Journal of Endotoxin Research, vol. 12, no. 5, pp. 285–295, 2006.
[35]
R. Kamijo, H. Harada, T. Matsuyama et al., “Requirement for transcription factor IRF-1 in NO synthase induction in macrophages,” Science, vol. 263, no. 5153, pp. 1612–1615, 1994.
[36]
S. Taki, T. Sato, K. Ogasawara et al., “Multistage regulation of Th1-type immune responses by the transcription factor IRF-1,” Immunity, vol. 6, no. 6, pp. 673–679, 1997.
[37]
B. Elser, M. Lohoff, S. Kock et al., “IFN-γ represses IL-4 expression via IRF-1 and IRF-2,” Immunity, vol. 17, no. 6, pp. 703–712, 2002.
[38]
I. A. Khan, T. Matsuura, S. Fonseka, and L. H. Kasper, “Production of nitric oxide (NO) is not essential for protection against acute Toxoplasma gondii infection in IRF-1-/- Mice,” Journal of Immunology, vol. 156, no. 2, pp. 636–643, 1996.
[39]
C. Iadecola, C. A. Salkowski, F. Zhang et al., “The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury,” The Journal of Experimental Medicine, vol. 189, no. 4, pp. 719–727, 1999.
[40]
Y. Wang, R. John, J. Chen et al., “IRF-1 promotes inflammation early after ischemic acute kidney injury,” Journal of the American Society of Nephrology, vol. 20, no. 7, pp. 1544–1555, 2009.
[41]
H. Harada, T. Fujita, M. Miyamoto et al., “Structurally similar but functionally distinct factors, IRF-1 and IRF-2, bind to the same regulatory elements of IFN and IFN-inducible genes,” Cell, vol. 58, no. 4, pp. 729–739, 1989.
[42]
N. Cuesta, C. A. Salkowski, K. E. Thomas, and S. N. Vogel, “Regulation of lipopolysaccharide sensitivity by IFN regulatory factor-21,” Journal of Immunology, vol. 170, no. 11, pp. 5739–5747, 2003.
[43]
K.-J. Han, L. Jiang, and H.-B. Shu, “Regulation of IRF2 transcriptional activity by its sumoylation,” Biochemical and Biophysical Research Communications, vol. 372, no. 4, pp. 772–778, 2008.
[44]
N. Cuesta, Q. M. Nhu, E. Zudaire, S. Polumuri, F. Cuttitta, and S. N. Vogel, “IFN regulatory factor-2 regulates macrophage apoptosis through a STAT1/3- and caspase-1-dependent mechanism,” Journal of Immunology, vol. 178, no. 6, pp. 3602–3611, 2007.
[45]
T. Fehr, G. Schoedon, B. Odermatt et al., “Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis,” The Journal of Experimental Medicine, vol. 185, no. 5, pp. 921–931, 1997.
[46]
C. A. Salkowski, S. A. Barber, G. R. Detore, and S. N. Vogel, “Differential dysregulation of nitric oxide production in macrophages with targeted disruptions in IFN regulatory factor-1 and -2 genes,” Journal of Immunology, vol. 156, no. 9, pp. 3107–3110, 1996.
[47]
J. R. Klune, R. Dhupar, S. Kimura, et al., “Interferon regulatory factor-2 is protective against hepatic ischemia-reperfusion injury,” American Journal of Physiology. Gastrointestinal and Liver Physiology, vol. 303, no. 5, pp. G666–G673, 2012.
[48]
S. Hida, K. Ogasawara, K. Sato et al., “CD8+ T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-α/β signaling,” Immunity, vol. 13, no. 5, pp. 643–655, 2000.
[49]
E. Ichikawa, S. Hida, Y. Omatsu et al., “Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 11, pp. 3909–3914, 2004.
[50]
W.-C. Au, P. A. Moore, W. Lowther, Y.-T. Juang, and P. M. Pitha, “Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11657–11661, 1995.
[51]
H. Nguyen, J. Hiscott, and P. M. Pitha, “The growing family of interferon regulatory factors,” Cytokine and Growth Factor Reviews, vol. 8, no. 4, pp. 293–312, 1997.
[52]
M. Yamamoto, S. Sato, H. Hemmi et al., “Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway,” Science, vol. 301, no. 5633, pp. 640–643, 2003.
[53]
K. A. Fitzgerald, D. C. Rowe, B. J. Barnes et al., “LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF,” The Journal of Experimental Medicine, vol. 198, no. 7, pp. 1043–1055, 2003.
[54]
K. Honda and T. Taniguchi, “IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors,” Nature Reviews Immunology, vol. 6, no. 9, pp. 644–658, 2006.
[55]
S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006.
[56]
H. Ishikawa, Z. Ma, and G. N. Barber, “STING regulates intracellular DNA-mediated, type i interferon-dependent innate immunity,” Nature, vol. 461, no. 7265, pp. 788–792, 2009.
[57]
D. Panne, T. Maniatis, and S. C. Harrison, “An atomic model of the interferon-beta enhanceosome,” Cell, vol. 129, no. 6, pp. 1111–1123, 2007.
[58]
K. Takahasi, N. N. Suzuki, M. Horiuchi et al., “X-ray crystal structure of IRF-3 and its functional implications,” Nature Structural Biology, vol. 10, no. 11, pp. 922–927, 2003.
[59]
D. Panne, S. M. McWhirter, T. Maniatis, and S. C. Harrison, “Interferon regulatory factor 3 is regulated by a dual phosphorylation- dependent switch,” The Journal of Biological Chemistry, vol. 282, no. 31, pp. 22816–22822, 2007.
[60]
B. Y. Qin, C. Liu, H. Srinath et al., “Crystal structure of IRF-3 in complex with CBP,” Structure, vol. 13, no. 9, pp. 1269–1277, 2005.
[61]
M. Zhang, Y. Tian, R.-P. Wang et al., “Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3,” Cell Research, vol. 18, no. 11, pp. 1096–1104, 2008.
[62]
A. J. Fleetwood, H. Dinh, A. D. Cook, P. J. Hertzog, and J. A. Hamilton, “GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on Type I interferon signaling,” Journal of Leukocyte Biology, vol. 86, no. 2, pp. 411–421, 2009.
[63]
S. K. Biswas, L. Gangi, S. Paul et al., “A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation),” Blood, vol. 107, no. 5, pp. 2112–2122, 2006.
[64]
L. Tarassishin, H.-S. Suh, and S. C. Lee, “Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway,” Journal of Neuroinflammation, vol. 8, article 187, 2011.
[65]
R. Lin, C. Heylbroeck, P. Genin, P. M. Pitha, and J. Hiscott, “Essential role of interferon regulatory factor 3 in direct activation of RANTES chemokine transcription,” Molecular and Cellular Biology, vol. 19, no. 2, pp. 959–966, 1999.
[66]
C. F. Eisenbeis, H. Singh, and U. Storb, “Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator,” Genes and Development, vol. 9, no. 11, pp. 1377–1387, 1995.
[67]
H.-W. Mittrücker, T. Matsuyama, A. Grossman et al., “Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function,” Science, vol. 275, no. 5299, pp. 540–543, 1997.
[68]
T. Lawrence and G. Natoli, “Transcriptional regulation of macrophage polarization: enabling diversity with identity,” Nature Reviews Immunology, vol. 11, no. 11, pp. 750–761, 2011.
[69]
A.-N. N. Ahyi, H.-C. Chang, A. L. Dent, S. L. Nutt, and M. H. Kaplan, “IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines,” Journal of Immunology, vol. 183, no. 3, pp. 1598–1606, 2009.
[70]
K. Honma, H. Udono, T. Kohno et al., “Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macropages in response to LPS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 16001–16006, 2005.
[71]
C. El Chartouni, L. Schwarzfischer, and M. Rehli, “Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming,” Immunobiology, vol. 215, no. 9-10, pp. 821–825, 2010.
[72]
T. Satoh, O. Takeuchi, A. Vandenbon et al., “The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection,” Nature Immunology, vol. 11, no. 10, pp. 936–944, 2010.
[73]
M. Ishii, H. Wen, C. A. S. Corsa et al., “Epigenetic regulation of the alternatively activated macrophage phenotype,” Blood, vol. 114, no. 15, pp. 3244–3254, 2009.
[74]
A. Takaoka, H. Yanai, S. Kondo et al., “Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors,” Nature, vol. 434, no. 7030, pp. 243–249, 2005.
[75]
A. Paun, R. Bankoti, T. Joshi, P. M. Pitha, and S. St?ger, “Critical role of IRF-5 in the development of t helper 1 responses to Leishmania donovani infection,” PLoS Pathogens, vol. 7, no. 1, Article ID e1001246, 2011.
[76]
D. A. Savitsky, H. Yanai, T. Tamura, T. Taniguchi, and K. Honda, “Contribution of IRF5 in B cells to the development of murine SLE-like disease through its transcriptional control of the IgG2a locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 22, pp. 10154–10159, 2010.
[77]
D. C. Lacey, A. Achuthan, A. J. Fleetwood et al., “Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models,” Journal of Immunology, vol. 188, no. 11, pp. 5752–5765, 2012.
[78]
H. L. Eames, D. G. Saliba, T. Krausgruber, A. Lanfrancotti, G. Ryzhakov, and I. A. Udalova, “KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages,” Immunobiology, vol. 217, no. 12, pp. 1315–1324, 2012.
[79]
T. Krausgruber, K. Blazek, T. Smallie et al., “IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses,” Nature Immunology, vol. 12, no. 3, pp. 231–238, 2011.
[80]
M. Hedl and C. Abraham, “IRF5 risk polymorphisms contribute to interindividual variance in pattern recognition receptor-mediated cytokine secretion in human monocyte-derived cells,” Journal of Immunology, vol. 188, no. 11, pp. 5348–5356, 2012.
[81]
D. Feng, R. C. Stone, M.-L. Eloranta et al., “Genetic variants and disease-associated factors contribute to enhanced interferon regulatory factor 5 expression in blood cells of patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 62, no. 2, pp. 562–573, 2010.
[82]
R. R. Graham, C. Kyogoku, S. Sigurdsson et al., “Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 16, pp. 6758–6763, 2007.
[83]
R. C. Stone, D. Feng, J. Deng et al., “Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type i interferons,” Arthritis and Rheumatism, vol. 64, no. 3, pp. 788–798, 2012.
[84]
T. M. Zucchero, M. E. Cooper, B. S. Maher et al., “Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate,” The New England Journal of Medicine, vol. 351, no. 8, pp. 769–780, 2004.
[85]
C. R. Ingraham, A. Kinoshita, S. Kondo et al., “Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6),” Nature Genetics, vol. 38, no. 11, pp. 1335–1340, 2006.
[86]
M. Sato, H. Suemori, N. Hata et al., “Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction,” Immunity, vol. 13, no. 4, pp. 539–548, 2000.
[87]
M. Sato, N. Hata, M. Asagiri, T. Nakaya, T. Taniguchi, and N. Tanaka, “Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7,” FEBS Letters, vol. 441, no. 1, pp. 106–110, 1998.
[88]
C.-F. Qi, Z. Li, M. Raffeld, H. Wang, A. L. Kovalchuk, and H. C. Morse III, “Differential expression of IRF8 in subsets of macrophages and dendritic cells and effects of IRF8 deficiency on splenic B cell and macrophage compartments,” Immunologic Research, vol. 45, no. 1, pp. 62–74, 2009.
[89]
H. Wang and H. C. Morse III, “IRF8 regulates myeloid and B lymphoid lineage diversification,” Immunologic Research, vol. 43, no. 1–3, pp. 109–117, 2009.
[90]
A. M. Becker, D. G. Michael, A. T. Satpathy, R. Sciammas, H. Singh, and D. Bhattacharya, “IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors,” Blood, vol. 119, no. 9, pp. 2003–2012, 2012.
[91]
L. Laricchia-Robbio, T. Tamura, T. Karpova, B. L. Sprague, J. G. McNally, and K. Ozato, “Partner-regulated interaction of IFN regulatory factor 8 with chromatin visualized in live macrophages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14368–14373, 2005.
[92]
T. Holtschke, J. L?hler, Y. Kanno et al., “Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene,” Cell, vol. 87, no. 2, pp. 307–317, 1996.
[93]
H. Xu, J. Zhu, S. Smith, et al., “Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization,” Nature Immunology, vol. 13, no. 7, pp. 642–650, 2012.
[94]
T. H. Chang, S. Xu, P. Tailor, T. Kanno, and K. Ozato, “The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation,” Journal of Immunology, vol. 189, no. 7, pp. 3548–3556, 2012.
[95]
N. C. Reich and L. Liu, “Tracking STAT nuclear traffic,” Nature Reviews Immunology, vol. 6, no. 8, pp. 602–612, 2006.