全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Diagnostic Function of OCT in Diabetic Maculopathy

DOI: 10.1155/2013/434560

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetic maculopathy (DM) is one of the major causes of vision impairment in individuals with diabetes. The traditional approach to diagnosis of DM includes fundus ophthalmoscopy and fluorescein angiography. Although very useful clinically, these methods do not contribute much to the evaluation of retinal morphology and its thickness profile. That is why a new technique called optical coherence tomography (OCT) was utilized to perform cross-sectional imaging of the retina. It facilitates measuring the macular thickening, quantification of diabetic macular oedema, and detecting vitreoretinal traction. Thus, OCT may assist in patient selection with DM who can benefit from treatment, identify what treatment is indicated, guide its implementing, and allow precise monitoring of treatment response. It seems to be the technique of choice for the early detection of macular oedema and for the followup of DM. 1. Introduction Diabetic retinopathy is the name given to the changes in the retina, which develop over a period of time in diabetics. It remains one of the major causes of new-onset visual loss in developed countries. If the central part of the retina (i.e., the macula) is involved, it is referred to as diabetic maculopathy. This is the most common cause of vision impairment in individuals with diabetic retinopathy [1]. The traditional approach to diagnosis of diabetic maculopathy includes fundus ophthalmoscopy and fluorescein angiography (FA) [2]. The Early Treatment Diabetic Retinopathy Study (ETDRS) identified stereoscopic slit-lamp biomicroscopy and stereo colour fundus photography as standard methods of macular thickness assessment utilized in order to determine whether the treatment should be commenced as they defined the clinically significant macular oedema (ETDRS report number 10, 1991). However, these methods are subjective and relatively insensitive to small changes in retinal thickness and, therefore, may be unable to identify mild or localized macular thickening [3]. They also do not provide any data on retinal morphology and blood flow. On the other hand, FA is a highly effective test of evaluating retinal blood vessels, macular perfusion, and pattern of leakage causing the oedema. Although very useful clinically, it also does not contribute much to the evaluation of retinal morphology and its thickness profile. In 1991 the researchers from Massachusetts Institute of Technology and Harvard University patented the technique of optical coherence tomography (OCT), which was a major breakthrough in ophthalmic diagnostics (US5321501 A, Swanson EA,

References

[1]  R. Williams, M. Airey, H. Baxter, J. Forrester, T. Kennedy-Martin, and A. Girach, “Epidemiology of diabetic retinopathy and macular oedema: a systematic review,” Eye, vol. 18, no. 10, pp. 963–983, 2004.
[2]  A. Kiri, D. S. Dyer, N. M. Bressler, S. B. Bressler, and A. P. Schachat, “Detection of diabetic macular edema: nidek 3Dx stereophotography compared with fundus biomicroscopy,” American Journal of Ophthalmology, vol. 122, no. 5, pp. 654–662, 1996.
[3]  M. R. Hee, C. A. Puliafito, C. Wong et al., “Quantitative assessment of macular edema with optical coherence tomography,” Archives of Ophthalmology, vol. 113, no. 8, pp. 1019–1029, 1995.
[4]  D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991.
[5]  C. A. Puliafito, M. R. Hee, C. P. Lin et al., “Imaging of macular diseases with optical coherence tomography,” Ophthalmology, vol. 102, no. 2, pp. 217–229, 1995.
[6]  M. Wojtkowski, V. Srinivasan, J. G. Fujimoto et al., “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology, vol. 112, no. 10, pp. 1734–1746, 2005.
[7]  M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” Journal of Biomedical Optics, vol. 7, no. 3, pp. 457–463, 2002.
[8]  S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Optics Letters, vol. 22, no. 5, pp. 340–342, 1997.
[9]  M. Brar, D.-U. G. Bartsch, N. Nigam et al., “Colour versus grey-scale display of images on high- Resolution spectral OCT,” British Journal of Ophthalmology, vol. 93, no. 5, pp. 597–602, 2009.
[10]  I. C. Han and G. J. Jaffe, “Evaluation of artifacts associated with macular spectral-domain optical coherence tomography,” Ophthalmology, vol. 117, no. 6, pp. 1177.e4–1189.e4, 2010.
[11]  A. Giani, M. Cigada, D. D. Esmaili et al., “Artifacts in automatic retinal segmentation using different optical coherence tomography instruments,” Retina, vol. 30, no. 4, pp. 607–616, 2010.
[12]  S. Grover, R. K. Murthy, V. S. Brar, and K. V. Chalam, “Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis),” American Journal of Ophthalmology, vol. 148, no. 2, pp. 266–271, 2009.
[13]  B. Asefzadeh, A. A. Cavallerano, and B. M. Fisch, “Racial differences in macular thickness in healthy eyes,” Optometry and Vision Science, vol. 84, no. 10, pp. E941–E945, 2007.
[14]  W. K. Song, S. C. Lee, E. S. Lee, C. Y. Kim, and S. S. Kim, “Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study,” Investigative Ophthalmology and Visual Science, vol. 51, no. 8, pp. 3913–3918, 2010.
[15]  L. Pierro, S. M. Giatsidis, E. Mantovani, and M. Gagliardi, “Macular thickness interoperator and intraoperator reproducibility in healthy eyes using 7 optical coherence tomography instruments,” American Journal of Ophthalmology, vol. 150, no. 2, pp. 199–204, 2010.
[16]  N. Patel, H. Chowdhury, R. Leung, and S. Sivaprasad, “Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diabetic macular edema,” Indian Journal of Ophthalmology, vol. 61, pp. 208–212, 2013.
[17]  J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, SLACK Inc., Thorofare, NJ, USA, 2nd edition, 2004.
[18]  U. K. Wali and N. Al Kharousi, “Clinical applications of optical coherence tomography in ophthalmology,” in Selected Topics in Optical Coherence Tomography, G. Liu, Ed., InTech, Vienna, Austria, 2012.
[19]  D. Koleva-Georgieva and N. Sivkova, “Assessment of serous macular detachment in eyes with diabetic macular edema by use of spectral-domain optical coherence tomography,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 247, no. 11, pp. 1461–1469, 2009.
[20]  D. N. Koleva-Georgieva and N. P. Sivkova, “Types of diabetic macular edema assessed by optical coherence tomography,” Folia Medica, vol. 50, no. 3, pp. 30–38, 2008.
[21]  T. Otani, Y. Yamaguchi, and S. Kishi, “Correlation between visual acuity and foveal microstructural changes in diabetic macular edema,” Retina, vol. 30, no. 5, pp. 774–780, 2010.
[22]  A. S. Maheshwary, S. F. Oster, R. M. S. Yuson, L. Cheng, F. Mojana, and W. R. Freeman, “The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema,” American Journal of Ophthalmology, vol. 150, no. 1, pp. 63.e1–67.e1, 2010.
[23]  H. J. Shin, S. H. Lee, H. Chung, and H. C. Kim, “Association between photoreceptor integrity and visualoutcome in diabetic macular edema,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 250, no. 1, pp. 61–70, 2012.
[24]  J. Yohannan, M. Bittencourt, Y. J. Sepah, et al., “Association of retinal sensitivity to integrity of photoreceptor inner/outer segment junction in patients with diabetic macular edema,” Ophthalmology, vol. 120, pp. 1254–1261, 2013.
[25]  J. I. Patel, P. G. Hykin, M. Schadt, V. Luong, F. Fitzke, and Z. J. Gregor, “Pars plana vitrectomy for diabetic macular oedema: OCT and functional correlations,” Eye, vol. 20, no. 6, pp. 674–680, 2006.
[26]  S. D. Pendergast, T. S. Hassan, G. A. Williams et al., “Vitrectomy for diffuse diabetic macular edema associated with a taut premacular posterior hyaloid,” American Journal of Ophthalmology, vol. 130, no. 2, pp. 178–186, 2000.
[27]  S. P. Shah, M. Patel, D. Thomas, S. Aldington, and D. A. H. Laidlaw, “Factors predicting outcome of vitrectomy for diabetic macular oedema: results of a prospective study,” British Journal of Ophthalmology, vol. 90, no. 1, pp. 33–36, 2006.
[28]  D. Gaucher, R. Tadayoni, A. Erginay, B. Haouchine, A. Gaudric, and P. Massin, “Optical coherence tomography assessment of the vitreoretinal relationship in diabetic macular edema,” American Journal of Ophthalmology, vol. 139, no. 5, pp. 807–813, 2005.
[29]  T. Otani, S. Kishi, and Y. Maruyama, “Patterns of diabetic macular edema with optical coherence tomography,” American Journal of Ophthalmology, vol. 127, no. 6, pp. 688–693, 1999.
[30]  S. W. Kang, C. Y. Park, and D.-I. Ham, “The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema,” American Journal of Ophthalmology, vol. 137, no. 2, pp. 313–322, 2004.
[31]  G. Panozzo, B. Parolini, E. Gusson et al., “Diabetic macular edema: an OCT-based classification,” Seminars in Ophthalmology, vol. 19, no. 1-2, pp. 13–20, 2004.
[32]  B. Y. Kim, S. D. Smith, and P. K. Kaiser, “Optical coherence tomographic patterns of diabetic macular edema,” American Journal of Ophthalmology, vol. 142, no. 3, pp. 405.e1–412.e1, 2006.
[33]  W. Soliman, B. Sander, and T. M. J?rgensen, “Enhanced optical coherence patterns of diabetic macular oedema and their correlation with the pathophysiology,” Acta Ophthalmologica Scandinavica, vol. 85, no. 6, pp. 613–617, 2007.
[34]  D. Koleva-Georgieva, “Optical coherence tomography findings in diabetic macular edema,” in Diabetic Retinopathy, M. S. Ola, Ed., InTech, Vienna, Austria, 2012.
[35]  X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Optics Letters, vol. 20, pp. 1337–1339, 1995.
[36]  J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Optics Letters, vol. 22, no. 18, pp. 1439–1441, 1997.
[37]  Y. Zhao, Z. Chen, C. Saxer et al., “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Optics Letters, vol. 25, no. 18, pp. 1358–1360, 2000.
[38]  Y. Wang, A. A. Fawzi, R. Varma et al., “Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases,” Investigative Ophthalmology and Visual Science, vol. 52, no. 2, pp. 840–845, 2011.
[39]  Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Optics Express, vol. 17, no. 5, pp. 4061–4073, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133