During myocardial infarction, sterile inflammation occurs. The danger model is a solid theoretic framework that explains this inflammation as danger associated molecular patterns activate the immune system. The innate immune system can sense danger signals through different pathogen recognition receptors (PRR) such as toll-like receptors, nod-like receptors and receptors for advanced glycation endproducts. Activation of a PRR results in the production of cytokines and the recruitment of leukocytes to the site of injury. Due to tissue damage and necrosis of cardiac cells, danger signals such as extracellular matrix (ECM) breakdown products, mitochondrial DNA, heat shock proteins and high mobility box 1 are released. Matricellular proteins are non-structural proteins expressed in the ECM and are upregulated upon injury. Some members of the matricellular protein family (like tenascin-C, osteopontin, CCN1 and the galectins) have been implicated in the inflammatory and reparative responses following myocardial infarction and may function as danger signals. In a clinical setting, danger signals can function as prognostic and/or diagnostic biomarkers and for drug targeting. In this review we will provide an overview of the established knowledge on the role of danger signals in myocardial infarction and we will discuss areas of interest for future research. 1. Introduction In 1994, Matzinger postulated a theory that the immune system may not be evolved to distinguish between self and non-self, but rather sense “danger” [1]. Danger signals, besides pathogen associated molecular patterns (PAMPs), can be intracellular molecules that are normally not exposed to the immune system, for example, cardiac myosin and mitochondrial DNA, but also proteins that are only upregulated during injury, such as heat shock proteins (HSP). Danger signals can therefore be divided into constitutive and inducible. Furthermore, danger signals can be classified as truly primal initiators, which do not require previous activation of antigen presenting cells (APC) or positive feedback signals, which can amplify or convert an ongoing inflammatory response [2]. This danger model explains the inflammatory response following myocardial infarction (MI), a situation where danger associated molecular patterns (DAMPs), and not pathogens, activate the immune system. For instance, extracellular matrix breakdown products released by the damaged myocardium and constituents of dying cardiomyocytes serve as danger signals in the infarcted myocardium, activating an inflammatory reaction. A certain amount
References
[1]
P. Matzinger, “Tolerance, danger, and the extended family,” Annual Review of Immunology, vol. 12, pp. 991–1045, 1994.
[2]
S. Gallucci and P. Matzinger, “Danger signals: SOS to the immune system,” Current Opinion in Immunology, vol. 13, no. 1, pp. 114–119, 2001.
[3]
G.-Y. Chen, J. Tang, P. Zheng, and Y. Liu, “CD24 and siglec-10 selectively repress tissue damage—induced immune responses,” Science, vol. 323, no. 5922, pp. 1722–1725, 2009.
[4]
K.-H. Chun and S.-Y. Seong, “CD14 but not MD2 transmit signals from DAMP,” International Immunopharmacology, vol. 10, no. 1, pp. 98–106, 2010.
[5]
K. S. Midwood and A. M. Piccinini, “DAMPening inflammation by modulating TLR signalling,” Mediators of Inflammation, vol. 2010, Article ID 672395, 21 pages, 2010.
[6]
T. Kawai and S. Akira, “The role of pattern-recognition receptors in innate immunity: update on toll-like receptors,” Nature Immunology, vol. 11, no. 5, pp. 373–384, 2010.
[7]
M. Yamamoto, S. Sato, H. Hemmi et al., “Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway,” Science, vol. 301, no. 5633, pp. 640–643, 2003.
[8]
K. Ohashi, V. Burkart, S. Flohé, and H. Kolb, “Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex,” The Journal of Immunology, vol. 164, no. 2, pp. 558–561, 2000.
[9]
W. Chao, “Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart,” The American Journal of Physiology: Heart and Circulatory Physiology, vol. 296, no. 1, pp. H1–H12, 2009.
[10]
Y. Feng and W. Chao, “Toll-like receptors and myocardial inflammation,” International Journal of Inflammation, vol. 2011, Article ID 170352, 21 pages, 2011.
[11]
F. Arslan, M. B. Smeets, L. A. J. O'Neill et al., “Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody,” Circulation, vol. 121, no. 1, pp. 80–90, 2010.
[12]
J. Favre, P. Musette, V. Douin-Echinard et al., “Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 5, pp. 1064–1071, 2007.
[13]
F. Arslan, J. H. Houtgraaf, B. Keogh, et al., “Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs,” Circulation, vol. 5, pp. 279–287, 2012.
[14]
H.-S. Ding, J. Yang, P. Chen, et al., “The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis,” Gene, vol. 527, no. 1, pp. 389–393, 2013.
[15]
J.-I. Oyama, C. Blais Jr., X. Liu et al., “Reduced myocardial ischemia-reperfusion injury in Toll-like receptor 4-deficient mice,” Circulation, vol. 109, no. 6, pp. 784–789, 2004.
[16]
L. Timmers, J. P. G. Sluijter, J. K. van Keulen et al., “Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction,” Circulation Research, vol. 102, no. 2, pp. 257–264, 2008.
[17]
N. Inohara, T. Koseki, L. del Peso et al., “Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB,” The Journal of Biological Chemistry, vol. 274, no. 21, pp. 14560–14567, 1999.
[18]
Y. Ogura, N. Inohara, A. Benito, F. F. Chen, S. Yamaoka, and G. Nú?ez, “Nod2, a Nod1/Apaf-1 Family Member That Is Restricted to Monocytes and Activates NF-κB,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 4812–4818, 2001.
[19]
A. Halle, V. Hornung, G. C. Petzold et al., “The NALP3 inflammasome is involved in the innate immune response to amyloid-β,” Nature Immunology, vol. 9, no. 8, pp. 857–865, 2008.
[20]
C. R. Stewart, L. M. Stuart, K. Wilkinson et al., “CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer,” Nature Immunology, vol. 11, no. 2, pp. 155–161, 2010.
[21]
M. Jana, C. A. Palencia, and K. Pahan, “Fibrillar amyloid-β peptides activate microglia via TLR2: implications for Alzheimer's disease,” The Journal of Immunology, vol. 181, no. 10, pp. 7254–7262, 2008.
[22]
F. Laudisi, R. Spreafico, M. Evrard, et al., “Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release,” The Journal of Immunology, vol. 191, pp. 1006–1010, 2013.
[23]
D. Burzyn, J. C. Rassa, D. Kim, I. Nepomnaschy, S. R. Ross, and I. Piazzon, “Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus,” Journal of Virology, vol. 78, no. 2, pp. 576–584, 2004.
[24]
Q. Chen, Y. Jin, K. Zhang, et al., “Alarmin HNP-1 promotes pyroptosis and IL-1β Release through different roles of NLRP3 inflammasome via P2X7 in LPS-primed macrophages,” Innate Immunity, pp. 1–11, 2013.
[25]
D. Yang, Q. Chen, B. S. Shao et al., “Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 79–90, 2008.
[26]
D. Pal, S. Dasgupta, R. Kundu, S. Maitra, et al., “Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance,” Nature Medicine, vol. 18, pp. 1279–1285, 2012.
[27]
S. T. Smiley, J. A. King, and W. W. Hancock, “Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4,” The Journal of Immunology, vol. 167, no. 5, pp. 2887–2894, 2001.
[28]
Y. Okamura, M. Watari, E. S. Jerud et al., “The extra domain A of fibronectin activates Toll-like receptor 4,” The Journal of Biological Chemistry, vol. 276, no. 13, pp. 10229–10233, 2001.
[29]
A. H. Schoneveld, I. Hoefer, J. P. G. Sluijter, J. D. Laman, D. P. V. de Kleijn, and G. Pasterkamp, “Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness,” Atherosclerosis, vol. 197, no. 1, pp. 95–104, 2008.
[30]
M. M. Khan, C. Gandhi, N. Chauhan et al., “Alternatively-spliced extra domain a of fibronectin promotes acute inflammation and brain injury after cerebral ischemia in mice,” Stroke, vol. 43, no. 5, pp. 1376–1382, 2012.
[31]
J. Li, R. Kokkola, S. Tabibzadeh et al., “Structural basis for the proinflammatory cytokine activity of high mobility group box 1,” Molecular Medicine, vol. 9, no. 1-2, pp. 37–45, 2003.
[32]
J. S. Park, J. Arcaroli, H.-K. Yum et al., “Activation of gene expression in human neutrophils by high mobility group box 1 protein,” The American Journal of Physiology: Cell Physiology, vol. 284, no. 4, pp. C870–C879, 2003.
[33]
J. S. Park, D. Svetkauskaite, Q. He et al., “Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein,” The Journal of Biological Chemistry, vol. 279, no. 9, pp. 7370–7377, 2004.
[34]
P. Scaffidi, T. Misteli, and M. E. Bianchi, “Release of chromatin protein HMGB1 by necrotic cells triggers inflammation,” Nature, vol. 418, no. 191, p. 195, 2002.
[35]
R. M. Vabulas, P. Ahmad-Nejad, C. Da Costa et al., “Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the Toll/Interleukin-1 receptor signaling pathway in innate immune cells,” The Journal of Biological Chemistry, vol. 276, no. 33, pp. 31332–31339, 2001.
[36]
Y. Li, R. Si, Y. Feng et al., “Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and toll-like receptor 4,” The Journal of Biological Chemistry, vol. 286, no. 36, pp. 31308–31319, 2011.
[37]
J. Tian, X. Guo, X. -M. Liu, et al., “Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes,” Cardiovascular Research, vol. 98, pp. 391–401, 2013.
[38]
M. Satoh, Y. Shimoda, T. Akatsu, Y. Ishikawa, Y. Minami, and M. Nakamura, “Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte Toll signal in patients with heart failure after acute myocardial infarction,” European Journal of Heart Failure, vol. 8, no. 8, pp. 810–815, 2006.
[39]
M. L. Shinohara, L. Lu, J. Bu et al., “Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells,” Nature Immunology, vol. 7, no. 5, pp. 498–506, 2006.
[40]
H. C. Volz, D. Laohachewin, C. Seidel et al., “S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-κB signaling,” Basic Research in Cardiology, vol. 107, no. 2, article 250, 2012.
[41]
T. Vogl, K. Tenbrock, S. Ludwig et al., “Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock,” Nature Medicine, vol. 13, no. 9, pp. 1042–1049, 2007.
[42]
J.-C. Simard, A. Cesaro, J. Chapeton-Montes, et al., “S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-kappaB (1.),” PLoS ONE, vol. 8, Article ID e72138, 2013.
[43]
K. Midwood, S. Sacre, A. M. Piccinini et al., “Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease,” Nature Medicine, vol. 15, no. 7, pp. 774–780, 2009.
[44]
L. Franchi, T. Eigenbrod, and G. Nú?ez, “Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation,” The Journal of Immunology, vol. 183, no. 2, pp. 792–796, 2009.
[45]
A. Babelova, K. Moreth, W. Tsalastra-Greul et al., “Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors,” The Journal of Biological Chemistry, vol. 284, no. 36, pp. 24035–24048, 2009.
[46]
L. Schaefer, A. Babelova, E. Kiss et al., “The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages,” Journal of Clinical Investigation, vol. 115, no. 8, pp. 2223–2233, 2005.
[47]
K. A. Scheibner, M. A. Lutz, S. Boodoo, M. J. Fenton, J. D. Powell, and M. R. Horton, “Hyaluronan fragments act as an endogenous danger signal by engaging TLR2,” The Journal of Immunology, vol. 177, no. 2, pp. 1272–1281, 2006.
[48]
D. Jiang, J. Liang, J. Fan et al., “Regulation of lung injury and repair by Toll-like receptors and hyaluronan,” Nature Medicine, vol. 11, no. 11, pp. 1173–1179, 2005.
[49]
S. Kim, H. Takahashi, W.-W. Lin et al., “Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis,” Nature, vol. 457, no. 7225, pp. 102–106, 2009.
[50]
P. Duewell, H. Kono, K. J. Rayner et al., “NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals,” Nature, vol. 464, no. 1357, p. 1361, 2010.
[51]
Y. S. Bae, J. H. Lee, S. H. Choi et al., “Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2,” Circulation Research, vol. 104, no. 2, pp. 210–218, 2009.
[52]
J. Y. Lee, K. H. Sohn, S. H. Rhee, and D. Hwang, “Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4,” The Journal of Biological Chemistry, vol. 276, no. 20, pp. 16683–16689, 2001.
[53]
N. Cheng, R. He, J. Tian, P. P. Ye, and R. D. Ye, “Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A,” The Journal of Immunology, vol. 181, no. 1, pp. 22–26, 2008.
[54]
K. Niemi, L. Teiril?, J. Lappalainen et al., “Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway,” The Journal of Immunology, vol. 186, no. 11, pp. 6119–6128, 2011.
[55]
S. Hiratsuka, A. Watanabe, Y. Sakurai et al., “The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase,” Nature Cell Biology, vol. 10, no. 11, pp. 1349–1355, 2008.
[56]
V. Hornung, A. Ablasser, M. Charrel-Dennis et al., “AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC,” Nature, vol. 458, no. 7237, pp. 514–518, 2009.
[57]
R. Zhou, A. S. Yazdi, P. Menu, and J. Tschopp, “A role for mitochondria in NLRP3 inflammasome activation,” Nature, vol. 469, pp. 221–225, 2011.
[58]
K. Karikó, H. Ni, J. Capodici, M. Lamphier, and D. Weissman, “mRNA is an endogenous ligand for Toll-like receptor 3,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12542–12550, 2004.
[59]
B. Scheel, R. Teufel, J. Probst et al., “Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA,” European Journal of Immunology, vol. 35, no. 5, pp. 1557–1566, 2005.
[60]
E. A. Leadbetter, I. R. Rifkin, A. M. Hohlbaum, B. C. Beaudette, M. J. Shlomchik, and A. Marshak-Rothstein, “Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors,” Nature, vol. 416, no. 6881, pp. 603–607, 2002.
[61]
V. Urbonaviciute, B. G. Fürnrohr, S. Meister et al., “Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: Implications for the pathogenesis of SLE,” Journal of Experimental Medicine, vol. 205, no. 13, pp. 3007–3018, 2008.
[62]
S. Mariathasan, D. S. Weiss, K. Newton et al., “Cryopyrin activates the inflammasome in response to toxins and ATP,” Nature, vol. 440, no. 7081, pp. 228–232, 2006.
[63]
K. -C. Liao and J. Mogridge, “Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP,” Infection and Immunity, vol. 81, pp. 570–579, 2013.
[64]
R. Liu-Bryan, P. Scott, A. Sydlaske, D. M. Rose, and R. Terkeltaub, “Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation,” Arthritis & Rheumatism, vol. 52, no. 9, pp. 2936–2946, 2005.
[65]
F. Martinon, V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp, “Gout-associated uric acid crystals activate the NALP3 inflammasome,” Nature, vol. 440, no. 7081, pp. 237–241, 2006.
[66]
E. Latz, T. S. Xiao, and A. Stutz, “Activation and regulation of the inflammasomes,” Nature Reviews Immunology, vol. 13, pp. 397–411, 2013.
[67]
K. Schroder and J. Tschopp, “The Inflammasomes,” Cell, vol. 140, no. 6, pp. 821–832, 2010.
[68]
M. Kawaguchi, M. Takahashi, T. Hata et al., “Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury,” Circulation, vol. 123, no. 6, pp. 594–604, 2011.
[69]
?. Sandanger, T. Ranheim, L. E. Vinge, et al., “The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury,” Cardiovascular Research, vol. 99, pp. 164–174, 2013.
[70]
C. J. Zuurbier, W. M. C. Jong, O. Eerbeek, et al., “Deletion of the innate immune NLRP3 receptor abolishes cardiac ischemic preconditioning and is associated with decreased Il-6/STAT3 signaling,” PLoS ONE, vol. 7, Article ID e40643, 2012.
[71]
T. Fernandes-Alnemri, J.-W. Yu, P. Datta, J. Wu, and E. S. Alnemri, “AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA,” Nature, vol. 458, no. 7237, pp. 509–513, 2009.
[72]
E. Asgari, G. Le Friec, H. Yamamoto, et al., “C3a modulates IL-1 secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation,” Blood, vol. 122, no. 20, pp. 3473–3481, 2013.
[73]
K. Rajam?ki, T. Nordstr?m, K. Nurmi, et al., “Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome,” The Journal of Biological Chemistry, vol. 288, no. 19, pp. 13410–13419, 2013.
[74]
M. Rossol, M. Pierer, N. Raulien, et al., “Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors,” Nature Communications, vol. 3, pp. 1–9, 2012.
[75]
B. J. Pomerantz, L. L. Reznikov, A. H. Harken, and C. A. Dinarello, “Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2871–2876, 2001.
[76]
M. Fernández-Velasco, P. Prieto, V. Terrón, et al., “NOD1 activation induces cardiac dysfunction and modulates cardiac fibrosis and cardiomyocyte apoptosis,” PLoS ONE, vol. 7, Article ID e45260, 2012.
[77]
A. Taguchi, D. C. Blood, G. del Toro et al., “Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases,” Nature, vol. 405, no. 6784, pp. 354–360, 2000.
[78]
M. A. Hofmann, S. Drury, C. Fu et al., “RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides,” Cell, vol. 97, no. 7, pp. 889–901, 1999.
[79]
A. Bierhaus, P. M. Humpert, M. Morcos et al., “Understanding RAGE, the receptor for advanced glycation end products,” Journal of Molecular Medicine, vol. 83, no. 11, pp. 876–886, 2005.
[80]
H. Yonekura, Y. Yamamoto, S. Sakurai et al., “Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury,” Biochemical Journal, vol. 370, no. 3, pp. 1097–1109, 2003.
[81]
C. Schlueter, S. Hauke, A. M. Flohr, P. Rogalla, and J. Bullerdiek, “Tissue-specific expression patterns of the RAGE receptor and its soluble forms—a result of regulated alternative splicing?” Biochimica et Biophysica Acta, vol. 1630, no. 1, pp. 1–6, 2003.
[82]
M. Andrassy, H. C. Volz, J. C. Igwe et al., “High-mobility group box-1 in ischemia-reperfusion injury of the heart,” Circulation, vol. 117, no. 25, pp. 3216–3226, 2008.
[83]
Z. A. Ibrahim, C. L. Armour, S. Phipps, and M. B. Sukkar, “RAGE and TLRs: relatives, friends or neighbours?” Molecular Immunology, vol. 56, pp. 739–744, 2013.
[84]
F. G. Bauernfeind, G. Horvath, A. Stutz et al., “Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression,” The Journal of Immunology, vol. 183, no. 2, pp. 787–791, 2009.
[85]
K. Schroder, V. Sagulenko, A. Zamoshnikova, et al., “Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction,” Immunobiology, vol. 217, pp. 1325–1329, 2012.
[86]
Y. Qiao, P. Wang, J. Qi, L. Zhang, and C. Gao, “TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages,” FEBS Letters, vol. 586, no. 7, pp. 1022–1026, 2012.
[87]
B. C. Mercier, E. Ventre, M. -L. Fogeron, et al., “NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells,” PLoS ONE, vol. 7, Article ID e42170, 2012.
[88]
G. Jiang, D. Sun, H. J. Kaplan, and H. Shao, “Retinal astrocytes pretreated with NOD2 and TLR2 ligands activate uveitogenic T cells,” PLoS ONE, vol. 7, Article ID e40510, 2012.
[89]
T. Watanabe, A. Kitani, P. J. Murray, and W. Strober, “NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses,” Nature Immunology, vol. 5, no. 8, pp. 800–808, 2004.
[90]
H. S. Hreggvidsdottir, T. ?stberg, H. W?h?maa et al., “The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 655–662, 2009.
[91]
J. H. Youn, Y. J. Oh, E. S. Kim, J. E. Choi, and J.-S. Shin, “High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-α production in human monocytes,” The Journal of Immunology, vol. 180, no. 7, pp. 5067–5074, 2008.
[92]
J. Tian, A. M. Avalos, S.-Y. Mao et al., “Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE,” Nature Immunology, vol. 8, no. 5, pp. 487–496, 2007.
[93]
A. Tsung, R. Sahai, H. Tanaka et al., “The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion,” Journal of Experimental Medicine, vol. 201, no. 7, pp. 1135–1143, 2005.
[94]
J. Qiu, M. Nishimura, Y. Wang et al., “Early release of HMGB-1 from neurons after the onset of brain ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 5, pp. 927–938, 2008.
[95]
T. Kohno, T. Anzai, K. Naito et al., “Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling,” Cardiovascular Research, vol. 81, no. 3, pp. 565–573, 2009.
[96]
R. S. Goldstein, M. Gallowitsch-Puerta, L. Yang et al., “Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia,” Shock, vol. 25, no. 6, pp. 571–574, 2006.
[97]
F. Giallauria, P. Cirillo, R. Lucci et al., “Autonomic dysfunction is associated with high mobility group box-1 levels in patients after acute myocardial infarction,” Atherosclerosis, vol. 208, no. 1, pp. 280–284, 2010.
[98]
P. Cirillo, F. Giallauria, M. Pacileo et al., “Increased high mobility group box-1 protein levels are associated with impaired cardiopulmonary and echocardiographic findings after acute myocardial infarction,” Journal of Cardiac Failure, vol. 15, no. 4, pp. 362–367, 2009.
[99]
K. Takahashi, S. Fukushima, K. Yamahara et al., “Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart,” Circulation, vol. 118, no. 14, pp. S106–S114, 2008.
[100]
Y.-Y. He, Y. Wen, X.-X. Zheng, and X.-J. Jiang, “Intramyocardial delivery of HMGB1 by a novel thermosensitive hydrogel attenuates cardiac remodeling and improves cardiac function after myocardial infarction,” Journal of Cardiovascular Pharmacology, vol. 61, pp. 283–290, 2013.
[101]
F. Limana, A. Germani, A. Zacheo et al., “Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation,” Circulation Research, vol. 97, no. 8, pp. e73–e83, 2005.
[102]
T. Kitahara, Y. Takeishi, M. Harada et al., “High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice,” Cardiovascular Research, vol. 80, no. 1, pp. 40–46, 2008.
[103]
Y. J. Woo, M. D. Taylor, J. E. Cohen et al., “Ethyl pyruvate preserves cardiac function and attenuates oxidative injury after prolonged myocardial ischemia,” Journal of Thoracic and Cardiovascular Surgery, vol. 127, no. 5, pp. 1262–1269, 2004.
[104]
X. Hu, H. Jiang, B. Cui, C. Xu, Z. Lu, and B. He, “Preconditioning with high mobility group box 1 protein protects against myocardial ischemia-reperfusion injury,” International Journal of Cardiology, vol. 145, no. 1, pp. 111–112, 2010.
[105]
S. Vandervelde, M. J. van Amerongen, R. A. Tio, A. H. Petersen, M. J. A. van Luyn, and M. C. Harmsen, “Increased inflammatory response and neovascularization in reperfused versus nonreperfused murine myocardial infarction,” Cardiovascular Pathology, vol. 15, no. 2, pp. 83–90, 2006.
[106]
M. T. Lotze and K. J. Tracey, “High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal,” Nature Reviews Immunology, vol. 5, no. 4, pp. 331–342, 2005.
[107]
K. Tanonaka, H. Yoshida, W. Toga, K.-I. Furuhama, and S. Takeo, “Myocardial heat shock proteins during the development of heart failure,” Biochemical and Biophysical Research Communications, vol. 283, no. 2, pp. 520–525, 2001.
[108]
K. Tanonaka, W. Toga, H. Yoshida, and S. Takeo, “Myocardial heat shock protein changes in the failing heart following coronary artery ligation,” Heart Lung and Circulation, vol. 12, no. 1, pp. 60–65, 2003.
[109]
A. A. Knowlton, S. Kapadia, G. Torre-Amione et al., “Differential expression of heat shock proteins in normal and failing human hearts,” Journal of Molecular and Cellular Cardiology, vol. 30, no. 4, pp. 811–818, 1998.
[110]
Z. Li, Y. Song, R. Xing, et al., “Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure,” PLoS ONE, vol. 8, Article ID e67964, 2013.
[111]
B. Dybdahl, S. A. Sl?rdahl, A. Waage, P. Kierulf, T. Espevik, and A. Sundan, “Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction,” Heart, vol. 91, no. 3, pp. 299–304, 2005.
[112]
B. Zal, J. C. Kaski, G. Arno et al., “Heat-shock protein 60-reactive CD4+CD28 null T cells in patients with acute coronary syndromes,” Circulation, vol. 109, no. 10, pp. 1230–1235, 2004.
[113]
A. Asea, S.-K. Kraeft, E. A. Kurt-Jones et al., “HSP70 stimulates cytokine production through a CD 14-dependant pathway, demonstrating its dual role as a chaperone and cytokine,” Nature Medicine, vol. 6, no. 4, pp. 435–442, 2000.
[114]
N. L. Lubbers, J. S. Polakowski, C. D. Wegner et al., “Oral bimoclomol elevates heat shock protein 70 and reduces myocardial infarct size in rats,” European Journal of Pharmacology, vol. 435, no. 1, pp. 79–83, 2002.
[115]
D. S. Pisetsky, “The origin and properties of extracellular DNA: from PAMP to DAMP,” Clinical Immunology, vol. 144, no. 1, pp. 32–40, 2012.
[116]
Q. Zhang, M. Raoof, Y. Chen et al., “Circulating mitochondrial DAMPs cause inflammatory responses to injury,” Nature, vol. 464, no. 7285, pp. 104–107, 2010.
[117]
T. Oka, S. Hikoso, O. Yamaguchi, et al., “Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure,” Nature, vol. 485, pp. 251–255, 2012.
[118]
K. Konstantinidis and R. Kitsis, “Escaped DNA inflames the heart,” Nature, vol. 485, pp. 179–180, 2012.
[119]
M. Bliks?en, L. H. Mariero, I. K. Ohm, et al., “Increased circulating mitochondrial DNA after myocardial infarction,” International Journal of Cardiology, vol. 158, pp. 132–134, 2012.
[120]
Y.-F. Liao, P. J. Gotwals, V. E. Koteliansky, D. Sheppard, and L. D. Van Water, “The EIIIA segment of fibronectin is a ligand for integrins α9β1 and α9β1 providing a novel mechanism for regulating cell adhesion by alternative splicing,” The Journal of Biological Chemistry, vol. 277, no. 17, pp. 14467–14474, 2002.
[121]
F. Arslan, M. B. Smeets, P. W. Riem Vis et al., “Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction,” Circulation Research, vol. 108, no. 5, pp. 582–592, 2011.
[122]
N. G. Frangogiannis, “Matricellular proteins in cardiac adaptation and disease,” Physiological Reviews, vol. 92, no. 2, pp. 635–688, 2012.
[123]
Y. Zhao, S. L. Young, and J. C. McIntosh, “Induction of tenascin in rat lungs undergoing bleomycin-induced pulmonary fibrosis,” The American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 274, no. 6, pp. L1049–L1057, 1998.
[124]
A. Sato, M. Hiroe, D. Akiyama et al., “Prognostic value of serum tenascin-C levels on long-term outcome after acute myocardial infarction,” Journal of Cardiac Failure, vol. 18, no. 6, pp. 480–486, 2012.
[125]
A. Sato, K. Aonuma, K. Imanaka-Yoshida et al., “Serum tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 47, no. 11, pp. 2319–2325, 2006.
[126]
T. Nishioka, K. Onishi, N. Shimojo et al., “Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice,” The American Journal of Physiology: Heart and Circulatory Physiology, vol. 298, no. 3, pp. H1072–H1078, 2010.
[127]
I. E. Willems, J. W. Arends, and M. J. Daemen, “Tenascin and fibronectin expression in healing human myocardial scars,” The Journal of Pathology, vol. 179, pp. 321–325, 1996.
[128]
R. A. Clark, H. P. Erickson, and T. A. Springer, “Tenascin supports lymphocyte rolling,” Journal of Cell Biology, vol. 137, no. 3, pp. 755–765, 1997.
[129]
C. R. Ruegg, R. Chiquet-Ehrismann, and S. S. Alkan, “Tenascin, an extracellular matrix protein, exerts immunomodulatory activities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 19, pp. 7437–7441, 1989.
[130]
T. J. Hemesath, L. S. Marton, and K. Stefansson, “Inhibition of T cell activation by the extracellular matrix protein tenascin,” The Journal of Immunology, vol. 152, no. 11, pp. 5199–5207, 1994.
[131]
J. D. Loike, L. Cao, S. Budhu, S. Hoffman, and S. C. Silverstein, “Blockade of α5β1 integrins reverses the inhibitory effect of tenascin on chemotaxis of human monocytes and polymorphonuclear leukocytes through three-dimensional gels of extracellular matrix proteins,” The Journal of Immunology, vol. 166, no. 12, pp. 7534–7542, 2001.
[132]
C. E. Murry, C. M. Giachelli, S. M. Schwartz, and R. Vracko, “Macrophages express osteopontin during repair of myocardial necrosis,” The American Journal of Pathology, vol. 145, no. 6, pp. 1450–1462, 1994.
[133]
K. X. Wang and D. T. Denhardt, “Osteopontin: role in immune regulation and stress responses,” Cytokine and Growth Factor Reviews, vol. 19, no. 5-6, pp. 333–345, 2008.
[134]
B. Zhu, K. Suzuki, H. A. Goldberg et al., “Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin,” Journal of Cellular Physiology, vol. 198, no. 1, pp. 155–167, 2004.
[135]
E. E. Rollo and D. T. Denhardt, “Differential effects of osteopontin on the cytotoxic activity of macrophages from young and old mice,” Immunology, vol. 88, no. 4, pp. 642–647, 1996.
[136]
Y. Koguchi, K. Kawakami, S. Kon et al., “Penicillium marneffei causes osteopontin-mediated production of interleukin-12 by peripheral blood mononuclear cells,” Infection and Immunity, vol. 70, no. 3, pp. 1042–1048, 2002.
[137]
S. A. Vetrone, E. Montecino-Rodriguez, E. Kudryashova et al., “Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-β,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1583–1594, 2009.
[138]
S. Ashkar, G. F. Weber, V. Panoutsakopoulou et al., “Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity,” Science, vol. 287, no. 5454, pp. 860–864, 2000.
[139]
K. Kawamura, K. Iyonaga, H. Ichiyasu, J. Nagano, M. Suga, and Y. Sasaki, “Differentiation, maturation, and survival of dendritic cells by osteopontin regulation,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 1, pp. 206–212, 2005.
[140]
A. C. Renkl, J. Wussler, T. Ahrens et al., “Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype,” Blood, vol. 106, no. 3, pp. 946–955, 2005.
[141]
N. A. Trueblood, Z. Xie, C. Communal et al., “Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin,” Circulation Research, vol. 88, no. 10, pp. 1080–1087, 2001.
[142]
M. Dobaczewski, M. Bujak, P. Zymek, G. Ren, M. L. Entman, and N. G. Frangogiannis, “Extracellular matrix remodeling in canine and mouse myocardial infarcts,” Cell and Tissue Research, vol. 324, no. 3, pp. 475–488, 2006.
[143]
I. Komatsubara, T. Murakami, S. Kusachi et al., “Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats,” Cardiovascular Pathology, vol. 12, no. 4, pp. 186–194, 2003.
[144]
P. Kossmehl, J. Sch?nberger, M. Shakibaei et al., “Increase of fibronectin and osteopontin in porcine hearts following ischemia and reperfusion,” Journal of Molecular Medicine, vol. 83, no. 8, pp. 626–637, 2005.
[145]
C. Suezawa, S. Kusachi, T. Murakami et al., “Time-dependent changes in plasma osteopontin levels in patients with anterior-wall acute myocardial infarction after successful reperfusion: correlation with left-ventricular volume and function,” Journal of Laboratory and Clinical Medicine, vol. 145, no. 1, pp. 33–40, 2005.
[146]
M. Scatena, L. Liaw, and C. M. Giachelli, “Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2302–2309, 2007.
[147]
P. Hsu, B. Su, Q. -Y. Kuok, and F. Mo, “Extracellular matrix protein CCN1 regulates cardiomyocyte apoptosis in mice with stress-induced cardiac injury,” Cardiovascular Research, vol. 98, pp. 64–72, 2013.
[148]
D. Hilfiker-Kleiner, K. Kaminski, A. Kaminska et al., “Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, an neurohumoral activation,” Circulation, vol. 109, no. 18, pp. 2227–2233, 2004.
[149]
T. Bai, C.-C. Chen, and L. F. Lau, “Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages,” The Journal of Immunology, vol. 184, no. 6, pp. 3223–3232, 2010.
[150]
M. Rother, S. Krohn, G. Kania et al., “Matricellular signaling molecule CCN1 attenuates experimental autoimmune myocarditis by acting as a novel immune cell migration modulator,” Circulation, vol. 122, no. 25, pp. 2688–2698, 2010.
[151]
M. L?bel, S. Bauer, C. Meisel et al., “CCN1: a novel inflammation-regulated biphasic immune cell migration modulator,” Cellular and Molecular Life Sciences, vol. 69, no. 18, pp. 3101–3113, 2012.
[152]
M. T. Elola, C. Wolfenstein-Todel, M. F. Troncoso, G. R. Vasta, and G. A. Rabinovich, “Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival,” Cellular and Molecular Life Sciences, vol. 64, no. 13, pp. 1679–1700, 2007.
[153]
S. Sato, C. St-Pierre, P. Bhaumik, and J. Nieminen, “Galectins in innate immunity: dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs),” Immunological Reviews, vol. 230, no. 1, pp. 172–187, 2009.
[154]
R. A. P. Weir, C. J. Petrie, C. A. Murphy, et al., “Galectin-3 and cardiac function in survivors of acute myocardial infarction,” Circulation, vol. 6, pp. 492–498, 2013.
[155]
I. M. Seropian, J. P. Cerliani, S. Toldo, B. W. van Tassell, et al., “Galectin-1 controls cardiac inflammation and ventricular remodeling during acute myocardial infarction,” The American Journal of Pathology, vol. 182, pp. 29–40, 2013.
[156]
H. Sano, D. K. Hsu, L. Yu et al., “Human galectin-3 is a novel chemoattractant for monocytes and macrophages,” The Journal of Immunology, vol. 165, no. 4, pp. 2156–2164, 2000.
[157]
J. A. Fulcher, S. T. Hashimi, E. L. Levroney et al., “Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix,” The Journal of Immunology, vol. 177, no. 1, pp. 216–226, 2006.
[158]
M. V. S?rensen, S. Pedersen, R. M?gelvang, J. Skov-Jensen, and A. Flyvbjerg, “Plasma high-mobility group box 1 levels predict mortality after ST-segment elevation myocardial infarction,” JACC, vol. 4, no. 3, pp. 281–286, 2011.
[159]
T. Hashimoto, J. Ishii, F. Kitagawa et al., “Circulating high-mobility group box 1 and cardiovascular mortality in unstable angina and non-ST-segment elevation myocardial infarction,” Atherosclerosis, vol. 221, no. 2, pp. 490–495, 2012.
[160]
J. H. Peters, M. N. Grote, N. E. Lane, and R. J. Maunder, “Changes in plasma fibronectin isoform levels predict distinct clinical outcomes in critically III patients,” Biomarker Insights, vol. 6, pp. 59–68, 2011.