全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IRF5 Is a Specific Marker of Inflammatory Macrophages In Vivo

DOI: 10.1155/2013/245804

Full-Text   Cite this paper   Add to My Lib

Abstract:

Macrophages are an integral part of the innate immune system and key players in pathogen clearance and tissue remodelling. Both functions are accomplished by a pivotal network of different macrophage subtypes, including proinflammatory M1 and anti-inflammatory M2 macrophages. Previously, our laboratory identified the transcription factor interferon regulatory factor 5 (IRF5) as the master regulator of the M1 macrophage polarisation. IRF5 was found to be highly expressed in human M1 compared to M2 macrophages. Furthermore, IRF5 dictates the expression of proinflammatory genes such as IL12b and IL23a whilst repressing anti-inflammatory genes like IL10. Here we show that murine bone marrow derived macrophages differentiated in vitro with GM-CSF are also characterised by high levels of IRF5 mRNA and protein and express proinflammatory cytokines upon LPS stimulation. These macrophages display characteristic expression of M1-marker MHC II but lack the M2-marker CD206. Significantly, we develop intracellular staining of IRF5- expressing macrophages and utilise it to recapitulate the in vitro results in an in vivo model of antigen-induced arthritis, emphasising their physiological relevance. Thus, we establish the species-invariant role of IRF5 in controlling the inflammatory macrophage phenotype both in vitro and in in vivo. 1. Introduction Macrophages are immune cells involved in recognition of pathogenic stimuli and the initiation and resolution of inflammation. They can adapt to various different environmental signals giving rise to several subtypes with distinct functions [1]. These subtypes can be classified as M1 (classically activated) and M2 (alternatively activated) macrophages. In addition, there are several phenotypes associated with M2 macrophages, for example, M2-like or tumour associated macrophages [2]. M1 macrophages secrete high levels of IL-12 and IL-23 but low levels of IL-10, whereas M2 macrophages secrete low levels of IL-12 and IL-23 but high levels of IL-10 [3]. Several reports have described the in vitro differentiation of lineage-defined macrophages. In general, these methods utilise M-CSF (macrophage colony stimulating factor; CSF-1) to differentiate bone marrow derived progenitors, followed by priming with various stimuli. Addition of interferon-γ followed by lipopolysaccharide (LPS) stimulation has been used to acquire M1 macrophages whereas addition of IL-4 or IL-13 without LPS yields M2 macrophages [3]. Another established method uses GM-CSF (granulocyte/macrophage colony stimulating factor) in order to generate M1 macrophages or

References

[1]  D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008.
[2]  S. K. Biswas and A. Mantovani, “Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm,” Nature Immunology, vol. 11, no. 10, pp. 889–896, 2010.
[3]  S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003.
[4]  A. J. Fleetwood, T. Lawrence, J. A. Hamilton, and A. D. Cook, “Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation,” Journal of Immunology, vol. 178, no. 8, pp. 5245–5252, 2007.
[5]  F. A. W. Verreck, T. de Boer, D. M. L. Langenberg et al., “Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4560–4565, 2004.
[6]  J. A. Hamilton, “Colony-stimulating factors in inflammation and autoimmunity,” Nature Reviews Immunology, vol. 8, no. 7, pp. 533–544, 2008.
[7]  F. A. W. Verreck, T. de Boer, D. M. L. Langenberg, L. van der Zanden, and T. H. M. Ottenhoff, “Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-γ- and CD40L-mediated costimulation,” Journal of Leukocyte Biology, vol. 79, no. 2, pp. 285–293, 2006.
[8]  A. Kennedy, U. Fearon, D. J. Veale, and C. Godson, “Macrophages in synovial inflammation,” Frontiers in Immunology, vol. 2, article 52, 2011.
[9]  T. J. M. Smeets, M. C. Kraan, S. Galjaard, P. P. Youssef, M. D. Smith, and P. P. Tak, “Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage-pannus junction in patients with RA,” Annals of the Rheumatic Diseases, vol. 60, no. 6, pp. 561–565, 2001.
[10]  P. Barrera, “Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 43, no. 9, pp. 1951–1959, 2000.
[11]  P. L. E. M. van Lent, A. E. M. Holthuysen, N. van Rooijen, L. B. A. van de Putte, and W. B. van den Berg, “Local removal of phagocytic synovial lining cells by clodronate- liposomes decreases cartilage destruction during collagen type II arthritis,” Annals of the Rheumatic Diseases, vol. 57, no. 7, pp. 408–413, 1998.
[12]  K. Nistala, S. Adams, H. Cambrook et al., “Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14751–14756, 2010.
[13]  M. Chabaud, E. Lubberts, L. Joosten, W. van den Berg, and P. Miossec, “IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis,” Arthritis Research, vol. 3, no. 3, pp. 168–177, 2001.
[14]  T. Krausgruber, K. Blazek, T. Smallie et al., “IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses,” Nature Immunology, vol. 12, no. 3, pp. 231–238, 2011.
[15]  A. Takaoka, H. Yanai, S. Kondo et al., “Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors,” Nature, vol. 434, no. 7030, pp. 243–249, 2005.
[16]  K. Honda and T. Taniguchi, “IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors,” Nature Reviews Immunology, vol. 6, no. 9, pp. 644–658, 2006.
[17]  B. J. Barnes, P. A. Moore, and P. M. Pitha, “Virus-specific activation of a novel Interferon Regulatory Factor, IRF-5, results in the induction of distinct interferon α genes,” Journal of Biological Chemistry, vol. 276, no. 26, pp. 23382–23390, 2001.
[18]  E. A. Stahl, S. Raychaudhuri, E. F. Remmers, et al., “Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci,” Nature Genetics, vol. 42, no. 6, pp. 508–514, 2010.
[19]  K. Dawidowicz, Y. Allanore, M. Guedj et al., “The Interferon Regulatory Factor 5 gene confers susceptibility to rheumatoid arthritis and influences its erosive phenotype,” Annals of the Rheumatic Diseases, vol. 70, no. 1, pp. 117–121, 2011.
[20]  D. L. Asquith, A. M. Miller, I. B. McInnes, and F. Y. Liew, “Animal models of rheumatoid arthritis,” European Journal of Immunology, vol. 39, no. 8, pp. 2040–2044, 2009.
[21]  P. J. Egan, A. van Nieuwenhuijze, I. K. Campbell, and I. P. Wicks, “Promotion of the local differentiation of murine Th17 cells by synovial macrophages during acute inflammatory arthritis,” Arthritis and Rheumatism, vol. 58, no. 12, pp. 3720–3729, 2008.
[22]  M. Y. Balkhi, K. A. Fitzgerald, and P. M. Pitha, “Functional regulation of MyD88-activated Interferon regulatory factor 5 by K63-linked polyubiquitination,” Molecular and Cellular Biology, vol. 28, no. 24, pp. 7296–7308, 2008.
[23]  H. C. C. Foreman, S. van Scoy, T. F. Cheng, and N. C. Reich, “Activation of interferon regulatory factor 5 by site specific phosphorylation,” PLoS ONE, vol. 7, no. 3, Article ID e33098, 2012.
[24]  M. Y. Balkhi, K. A. Fitzgerald, and P. M. Pitha, “IKKα negatively regulates IRF-5 function in a MyD88-TRAF6 pathway,” Cellular Signalling, vol. 22, no. 1, pp. 117–127, 2010.
[25]  K. Inaba, M. Inaba, N. Romani et al., “Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1693–1702, 1992.
[26]  A. Celada, M. J. Klemsz, and R. A. Maki, “Interferon-γ activates multiple pathways to regulate the expression of the genes for major histocompatibility class II I-Aβ, tumor necrosis factor and complement component C3 in mouse macrophages,” European Journal of Immunology, vol. 19, no. 6, pp. 1103–1109, 1989.
[27]  M. Rescigno, S. Citterio, C. Thèry et al., “Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 5229–5234, 1998.
[28]  S. C. Sicher, G. W. Chung, M. A. Vazquez, and C. Y. Lu, “Augmentation or inhibition of IFN-γ-induced MHC class II expression by lipopolysaccharides: the roles of TNF-α and nitric oxide, and the importance of the sequence of signaling,” Journal of Immunology, vol. 155, no. 12, pp. 5826–5834, 1995.
[29]  R. de Lorenzi, R. Gareus, S. Fengler, and M. Pasparakis, “GFP-p65 knock-in mice as a tool to study NF-κB dynamics in vivo,” Genesis, vol. 47, no. 5, pp. 323–329, 2009.
[30]  J. MacMicking, Q. W. Xie, and C. Nathan, “Nitric oxide and macrophage function,” Annual Review of Immunology, vol. 15, pp. 323–350, 1997.
[31]  S. Gordon and F. O. Martinez, “Alternative activation of macrophages: mechanism and functions,” Immunity, vol. 32, no. 5, pp. 593–604, 2010.
[32]  E. L. Gautier, “Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages,” Nature Immunology, vol. 13, no. 11, pp. 1118–1128, 2012.
[33]  R. C. Stone, D. Feng, J. Deng et al., “Interferon Regulatory Factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type i interferons,” Arthritis and Rheumatism, vol. 64, no. 3, pp. 788–798, 2012.
[34]  C. Draijer, P. Robbe, C. E. Boorsma, M. N. Hylkema, and B. N. Melgert, “Characterization of macrophage phenotypes in three murine models of house-dust-mite-induced asthma,” Mediators of Inflammation, vol. 2013, Article ID 632049, 10 pages, 2013.
[35]  V. Dideberg, G. Kristjansdottir, L. Milani et al., “An insertion-deletion polymorphism in the interferon regulatory factor 5 (IRF5) gene confers risk of inflammatory bowel diseases,” Human Molecular Genetics, vol. 16, no. 24, pp. 3008–3016, 2007.
[36]  G. Gathungu, C. K. Zhang, W. Zhang, and J. H. Cho, “A two-marker haplotype in the IRF5 gene is associated with inflammatory bowel disease in a North American cohort,” Genes and Immunity, vol. 13, no. 4, pp. 351–355, 2012.
[37]  C. Wang, M. J. Rose-Zerilli, G. H. Koppelman, et al., “Evidence of association between Interferon Regulatory Factor 5 gene polymorphisms and asthma,” Gene, vol. 504, no. 2, pp. 220–225, 2012.
[38]  W. D. Xu, H. F. Pan, Y. Xu, and D. Q. Ye, “Interferon regulatory factor 5 and autoimmune lupus,” Expert Reviews in Molecular Medicine, vol. 15, article e6, 2013.
[39]  L. C. Davies, M. Rosas, S. J. Jenkins, et al., “Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation,” Nature Communications, vol. 4, article 1886, 2013.
[40]  S. J. Jenkins, D. Ruckerl, P. C. Cook et al., “Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation,” Science, vol. 332, no. 6035, pp. 1284–1288, 2011.
[41]  L. C. Davies, S. J. Jenkins, J. E. Allen, and P. R. Taylor, “Tissue-resident macrophages,” Nature Immunology, vol. 14, no. 10, pp. 986–995, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133