全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Clinical Diagnosis, Microscopy, Rapid Diagnostic Tests, and Polymerase Chain Reaction in the Diagnosis of Plasmodium falciparum in Nigeria

DOI: 10.1155/2013/308069

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study compares the performance of clinical diagnosis and three laboratory diagnostic methods (thick film microscopy (TFM), rapid diagnostic test (RDT), and polymerase chain reaction (PCR)) for the diagnosis of Plasmodium falciparum in Nigeria. Using clinical criteria, 217 children were recruited into the study out of which 106 (48.8%) were positive by TFM, 84 (38.7%) by RDT, and 125 (57.6%) by PCR. Using a composite reference method generated from the three diagnostic methods, 71 (32.7%) patients were found to be truly infected and 90 (41.5%) truly uninfected, while 56 (25.8%) were misidentified as infected or noninfected. When each of the 3 diagnostic methods was compared with the composite reference, PCR had sensitivity of 97.3%, specificity of 62.5%, positive predictive value (PPV) of 56.8%, and negative predictive value (NPV) of 97.8%; microscopy had sensitivity of 77.2%, specificity of 72%, PPV of 66.9%, and NPV of 81.1%, while RDT had sensitivity of 62.3%, specificity of 87.4%, PPV of 67.7%, and NPV of 84.5%. PCR test performed best among the three methods followed by TFM and RDT in that order. The result of this study shows that clinical diagnosis cannot be relied upon for accurate diagnosis of P. falciparum in endemic areas. 1. Introduction Malaria remains an important public health concern in countries where transmission occurs regularly as well as in areas where transmission has been largely controlled or eliminated. It was estimated that there are 39 million children under 5 years of age who experience 33.7 million malaria episodes and 152,000 childhood deaths from malaria each year in areas suitable for seasonal malaria chemoprevention [1]. Factors such as drug pressure, strain variation, or approaches to blood collection affect the morphological appearance of malaria species which have created diagnostic problems that invariably had a negative effect on malaria control [2]. With the introduction of high cost antimalarial (artemisinin based therapies) the need for accurate diagnostic tools for monitoring malaria elimination/eradication successes becomes a task that must be achieved [3, 4]. In most endemic countries malaria diagnosis depends mainly on clinical evidence and in some cases thick film microscopy (TFM) and rapid diagnostic technique (RDT) may be used for laboratory confirmation. Microscopy remains the gold standard for malaria diagnosis and it is less costly with a threshold sensitivity of 5 to 50 parasite/μL (depending on the microscopist expertise) [5]. Microscopy can also characterize the infecting species and also

References

[1]  M. Cairns, A. Roca-Feltrer, T. Garske et al., “Estimating the potential public health impact of seasonal malaria chemoprevention in African children,” Nature Communications, vol. 3, article 881, 2012.
[2]  C. Beadle, G. W. Long, W. R. Weiss et al., “Diagnosis of malaria by detection of Plasmodium falciparum HRP-2 antigen with a rapid dipstick antigen-capture assay,” The Lancet, vol. 343, no. 8897, pp. 564–568, 1994.
[3]  I. M. Bashir, N. Otsyula, G. Awinda, M. Spring, P. Schneider, and J. N. Waitumbi, “Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study,” PLoS ONE, vol. 8, no. 3, Article ID e56828, 2013.
[4]  S. Shillcutt, C. Morel, C. Goodman et al., “Cost-effectiveness of malaria diagnostic methods in sub-Saharan Africa in an era of combination therapy,” Bulletin of the World Health Organization, vol. 86, no. 2, pp. 101–110, 2008.
[5]  M. Amexo, R. Tolhurst, G. Barnish, and I. Bates, “Malaria misdiagnosis: effects on the poor and vulnerable,” The Lancet, vol. 364, no. 9448, pp. 1896–1898, 2004.
[6]  M. T. Makler, C. J. Palmer, and A. L. Ager, “A review of practical techniques for the diagnosis of malaria,” Annals of Tropical Medicine and Parasitology, vol. 92, no. 4, pp. 419–433, 1998.
[7]  F. A. Abanyie, P. M. Arguin, and J. Gutman, “State of malaria diagnostic testing at clinical laboratories in the United States, 2010: a nationwide survey,” Malaria Journal, vol. 10, no. 1, article 340, 2011.
[8]  A. Moody, “Rapid diagnostic tests for malaria parasites,” Clinical Microbiology Reviews, vol. 15, no. 1, pp. 66–78, 2002.
[9]  Y. Wataya, F. Kubochi, C. Mizukoshi et al., “DNA diagnosis of falciparum malaria,” Nucleic Acids Symposium Series, no. 25, pp. 155–156, 1991.
[10]  O. Ojurongbe, T. O. Ogungbamigbe, A. F. Fagbenro-Beyioku, R. Fendel, P. G. Kremsner, and J. F. J. Kun, “Rapid detection of Pfcrt and Pfmdr1 mutations in Plasmodium falciparum isolates by FRET and in vivo response to chloroquine among children from Osogbo, Nigeria,” Malaria Journal, vol. 6, article 41, 2007.
[11]  F. Kawamoto, H. Miyake, O. Kaneko et al., “Sequence variation in the 18S rRNA gene, a target for PCR-based malaria diagnosis, in Plasmodium ovale from Southern Vietnam,” Journal of Clinical Microbiology, vol. 34, no. 9, pp. 2287–2289, 1996.
[12]  C. Wongsrichanalai, M. J. Barcus, S. Muth, A. Sutamihardja, and W. H. Wernsdorfer, “A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT),” The American Journal of Tropical Medicine and Hygiene, vol. 77, no. 6, supplement, pp. 119–127, 2007.
[13]  WHO, Basic Malaria Microscopy, Part II: Tutor's Guide, World Health Organization, Lyon, France, 2010.
[14]  Z. Lin, J. G. Suzow, J. M. Fontaine, and E. W. Naylor, “A simple automated DNA extraction method for dried blood specimens collected on filter paper,” Journal of the Association for Laboratory Automation, vol. 10, no. 5, pp. 310–314, 2005.
[15]  S. I. Oyedeji, H. O. Awobode, G. C. Monday, E. Kendjo, P. G. Kremsner, and J. F. Kun, “Comparison of PCR-based detection of Plasmodium falciparum infections based on single and multicopy genes,” Malaria Journal, vol. 6, no. 1, article 112, 2007.
[16]  N. Tangpukdee, C. Duangdee, P. Wilairatana, and S. Krudsood, “Malaria diagnosis: a brief review,” Korean Journal of Parasitology, vol. 47, no. 2, pp. 93–102, 2009.
[17]  C. J. M. Whitty, M. Armstrong, and R. H. Behrens, “Self-testing for falciparum malaria with antigen-capture cards by travelers with symptoms of malaria,” The American Journal of Tropical Medicine and Hygiene, vol. 63, no. 5-6, pp. 295–297, 2000.
[18]  O. Ojurongbe, S. I. Oyedeji, W. A. Oyibo, A. F. Fagbenro-Beyioku, and J. F. Kun, “Molecular surveillance of drug-resistant Plasmodium falciparum in two distinct geographical areas of Nigeria,” Wiener Klinische Wochenschrift, vol. 122, no. 23-24, pp. 681–685, 2010.
[19]  H. Reyburn, R. Mbatia, C. Drakeley et al., “Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study,” The British Medical Journal, vol. 329, no. 7476, pp. 1212–1215, 2004.
[20]  J. E. Rosenblatt, L. B. Reller, and M. P. Weinstein, “Laboratory diagnosis of infections due to blood and tissue parasites,” Clinical Infectious Diseases, vol. 49, no. 7, pp. 1103–1108, 2009.
[21]  C. K. Murray, R. A. Gasser Jr., A. J. Magill, and R. S. Miller, “Update on rapid diagnostic testing for malaria,” Clinical Microbiology Reviews, vol. 21, no. 1, pp. 97–110, 2008.
[22]  R. E. Coleman, J. Sattabongkot, S. Promstaporm et al., “Comparison of PCR and microscopy for the detection of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area in Thailand,” Malaria Journal, vol. 5, article 121, 2006.
[23]  Q. Cheng, N. Cloonan, K. Fischer et al., “stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens,” Molecular and Biochemical Parasitology, vol. 97, no. 1-2, pp. 161–176, 1998.
[24]  D. T. McNamara, L. J. Kasehagen, B. T. Grimberg, J. Cole-Tobian, W. E. Collins, and P. A. Zimmerman, “Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay,” The American Journal of Tropical Medicine and Hygiene, vol. 74, no. 3, pp. 413–421, 2006.
[25]  T. O. Ogungbamigbe, O. O. Ojurongbe, P. S. Ogunro, O. A. Olowe, and P. O. Elemile, “Prevalence and transmission pattern of Plasmodium falciparum infection in Osogbo metropolis, Southwest, Nigeria,” African Journal of Medicine and Medical Sciences, vol. 36, no. 4, pp. 305–310, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133