The Republic of the Congo adopted artemisinin-based combination therapies (ACTs) in 2006: artesunate-amodiaquine and artemether-lumefantrine as the first-line and second-line drugs, respectively. The baseline efficacy of artemether-lumefantrine was evaluated between March and July 2006 in Brazzaville, the capital city of Congo. Seventy-seven children aged between 6 months and 10 years were enrolled in a nonrandomized study. The children were treated under supervision with 6 doses of artemether-lumefantrine and followed up for 28 days in accordance with the 2003 World Health Organization guideline. Pretreatment (i.e., day 0) and recrudescent Plasmodium falciparum isolates between day 14 and day 28 were compared by the polymerase chain reaction to distinguish between true recrudescence and reinfection. The overall cure rate on day 28 was 96.9% after PCR correction. Reported adverse effects included pruritus and dizziness. Artemether-lumefantrine was highly efficacious in Brazzaville. Approximately 30% of the Congolese population reside in Brazzaville, the capital city. The epidemiology of malaria in the city of Brazzaville is heterogeneous [1]. Depending on the district, malaria transmission is low or intense. In general, malaria is meso- to hypoendemic in the city centre and hyperendemic in the periphery [2]. In terms of malaria burden, there are twice as many malaria-infected patients consulting health centres in the periphery, as compared with health centres in the city centre [3]. Surveys conducted in the main hospital in Brazzaville have shown that malaria is the first cause of admission in the department of paediatrics, mostly in children aged less than 4 years old [4, 5]. Due to the high levels of clinical resistance to chloroquine, amodiaquine, and sulphadoxine-pyrimethamine [6, 7], the Congolese Ministry of Public Health changed the national antimalarial drug policy in 2006. Two artemisinin-based combination therapies (ACTs) were adopted: artesunate-amodiaquine and artemether-lumefantrine for the first-line and second-line treatment of uncomplicated malaria, respectively. Before the drug policy change, only a single clinical study on the efficacy of artesunate-amodiaquine and artemether-lumefantrine had been conducted in a rural area in Congo [8]. The present nonrandomized study was conducted between March and July 2006 to provide the baseline data of artemether-lumefantrine efficacy in an urban area where the majority of the Congolese population reside. The study was conducted in Tenrikyo health centre located in Makélékélé district, which is in
References
[1]
J. F. Trape and A. Zoulani, “Malaria and urbanization in Central Africa: the example of Brazzaville. Part III: relationships between urbanization and the intensity of malaria transmission,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 81, no. 2, pp. 19–25, 1987.
[2]
J. F. Trape and A. Zoulani, “Malaria and urbanization in Central Africa: the example of Brazzaville. Part II: results of entomological surveys and epidemiological analysis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 81, no. 2, pp. 10–18, 1987.
[3]
M. Ndounga, P. N. Casimiro, V. Miakassissa-Mpassi, D. Loumouamou, F. Ntoumi, and L. K. Basco, “Malaria in health centres in the southern districts of Brazzaville, Congo,” Bulletin de la Societe de Pathologie Exotique, vol. 101, no. 4, pp. 329–335, 2008.
[4]
G. Moyen, S. Nzingoula, J. C. Mowandza-Ndinga, J. L. Nkoua, A. B. Mpemba, and V. Fourcarde, “Paludisme de l’enfant dans un service de pédiatrie à Brazzaville—à propos de 1073 observations,” MéDecine D’Afrique Noire, vol. 40, no. 3, pp. 177–181, 1993.
[5]
J. R. Mabiala-Babela, P. B. Makoumbou, A. Mbika-Cardorelle, J. B. Tsiba, and P. Senga, “Evolution de la mortalité hospitalière chez l’enfant à Brazzaville (Congo),” MéDecine D’Afrique Noire, vol. 56, no. 1, pp. 5–8, 2009.
[6]
P. I. Mayengue, M. Ndounga, M. M. Davy, N. Tandou, and F. Ntoumi, “In vivo chloroquine resistance and prevalence of the pfcrt codon 76 mutation in Plasmodium falciparum isolates from the Republic of Congo,” Acta Tropica, vol. 95, no. 3, pp. 219–225, 2005.
[7]
M. Ndounga, P. I. Mayengue, R. Tahar et al., “Efficacy of sulfadoxine-pyrimethamine, amodiaquine, and sulfadoxine-pyrimethamine-amodiaquine combination for the treatment of uncomplicated falciparum malaria in the urban and suburban areas of Brazzaville (Congo),” Acta Tropica, vol. 103, no. 3, pp. 163–171, 2007.
[8]
I. van den Broek, C. Kitz, S. Al Attas, F. Libama, M. Balasegaram, and J. P. Guthmann, “Efficacy of three artemisinin combination therapies for the treatmentof uncomplicated Plasmodium falciparum malaria in the Republic of Congo,” Malaria Journal, vol. 5, article 113, 2006.
[9]
World Health Organization, “Assessment and monitoring of antiMalarial drug efficacy for the treatment of uncomplicated falciparum malaria,” Tech. Rep. WHO/HTM/RBM/2003. 50, World Health Organization, Geneva, Switzerland, 2003.
[10]
L. K. Basco, R. Tahar, and A. Escalante, “Molecular epidemiology of malaria in Cameroon. XVIII. Polymorphisms of the Plasmodium falciparum merozoite surface antigen-2 gene in isolates from symptomatic patients,” American Journal of Tropical Medicine and Hygiene, vol. 70, no. 3, pp. 238–244, 2004.
[11]
World Health Organization, “Methods and techniques for clinical trials on antimalarial drug efficacy: genotyping to identify parasite populations,” Tech. Rep., World Health Organization, Geneva, Switzerland, 2008.
[12]
J. P. Guthmann, S. Cohuet, C. Rigutto et al., “High efficacy of two artemisinin-based combinations (artesunate?+?amodiaquine and artemether?+?lumefantrine) in Caala, Central Angola,” American Journal of Tropical Medicine and Hygiene, vol. 75, no. 1, pp. 143–145, 2006.
[13]
S. Y. Whegang, R. Tahar, V. N. Foumane et al., “Efficacy of non-artemisinin- and artemisinin-based combination therapies for uncomplicated falciparum malaria in Cameroon,” Malaria Journal, vol. 9, no. 1, article 56, 2010.
[14]
World Health Organization, Global Report on Antimalarial Drug Efficacy and Drug Resistance: 2000–2010, World Health Organization, Geneva, Switzerland, 2010.