全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Helicobacter pylori Infection and Risk of Lung Cancer: A Meta-Analysis

DOI: 10.1155/2013/131869

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Recent evidence showed that Helicobacter pylori seropositivity is a risk factor for gastric and several other cancers. However, evidence on H. pylori infection and risk of lung cancer has been controversial, with a limited number of underpowered studies. We therefore examined the association between H. pylori infection and risk of lung cancer. Methods. A comprehensive literature search was performed using PubMed, EMBASE (until October 2012) for studies investigating an association between Helicobacter pylori (H. pylori) infection and risk of lung cancer. Pooled odds ratio (OR) was calculated using random-effects model. Subgroup and sensitivity analysis were also done. Results. A total of seven studies (6 case-control and 1 cohort study) were included for the analysis. There was a significant heterogeneity among the studies, but no publication bias was observed. We found that H. pylori infection was associated with significantly increased risk of lung cancer (pooled OR, 2.29 (95% CI, 1.34–3.91) ). Conclusions. Our meta-analysis suggests a significant increased risk of lung cancer in patients with H. pylori infection. Further research is needed to confirm these findings and to identify the underlying biological mechanisms. 1. Introduction Lung cancer is the second most common cancer in both men and women. Most recent estimates of American Cancer Society reflect 160,340 deaths due to lung cancer (87,750 in men and 72,590 in women), accounting for about 28% of all cancer deaths in United States [1]. Helicobacter pylori (H. pylori) is one of the most common bacterial infections of humans affecting approximately 50% of the world’s population [2]. This Gram-negative bacterium infects the human gastric mucosa and causes long-term colonization and inflammation. In a subpopulation of infected individuals, long-term inflammation results in peptic ulcer disease and gastric malignancy [3]. Recent evidence showed that H. pylori seropositivity is also a risk factor for gastric [4], colorectal [5], pancreas [6], and hepatobiliary cancers [7, 8]. An increased seroprevalence was also found in various respiratory diseases like chronic bronchitis [9], asthma [10], and pulmonary tuberculosis [11]. However, evidence on H. pylori infection and risk of lung cancer has been controversial, with a limited number of underpowered studies that report result of increased risk [12–14], decreased risk [15], or no association [3, 16, 17] between the H. pylori infection and risk of lung cancer. This issue was discussed in previously conducted meta-analysis that analyzed the

References

[1]  American Cancer Society, “Cancer facts and figures 2012,” 2012, http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf.
[2]  G. Sachs and D. R. Scott, “Helicobacter pylori: eradication or preservation,” F1000 Medicine Reports, vol. 4, no. 1, article 7, 2012.
[3]  J. Koshiol, R. Flores, T. K. Lam et al., “Helicobacter pylori seropositivity and risk of lung cancer,” PLoS ONE, vol. 7, no. 2, Article ID e32106, 2012.
[4]  M. Cavaleiro-Pinto, B. Peleteiro, N. Lunet, and H. Barros, “Helicobacter pylori infection and gastric cardia cancer: systematic review and meta-analysis,” Cancer Causes and Control, vol. 22, no. 3, pp. 375–387, 2011.
[5]  N. Zumkeller, H. Brenner, M. Zwahlen, and D. Rothenbacher, “Helicobacter pylori infection and colorectal cancer risk: a meta-analysis,” Helicobacter, vol. 11, no. 2, pp. 75–80, 2006.
[6]  G. Trikudanathan, A. Philip, C. A. Dasanu, and W. L. Baker, “Association between Helicobacter pylori infection and pancreatic cancer. A cumulative meta-analysis,” Journal of the Pancreas, vol. 12, no. 1, pp. 26–31, 2011.
[7]  M. Pandey, R. R. Mishra, R. Dixit, R. Jaiswal, M. Shukla, and G. Nath, “Helicobacter bilis in human gallbladder cancer: results of a case-control study and a meta-analysis,” Asian Pacific Journal of Cancer Prevention, vol. 11, no. 2, pp. 343–347, 2010.
[8]  M. Selgrad, J. Bornschein, and T. Rokkas, “Helicobacter pylori: gastric cancer and extragastric intestinal malignancies,” Helicobacter, vol. 17, supplement 1, pp. 30–35.
[9]  M. Kanbay, A. Kanbay, and S. Boyacioglu, “Helicobacter pylori infection as a possible risk factor for respiratory system disease: a review of the literature,” Respiratory Medicine, vol. 101, no. 2, pp. 203–209, 2007.
[10]  Y. Wang, Y. Bi, L. Zhang, and C. Wang, “Is helicobacter pylori infection associated with asthma risk? A meta-analysis based on 770 cases and 785 controls,” International Journal of Medical Sciences, vol. 9, pp. 603–610, 2012.
[11]  S. Perry, B. C. De Jong, J. V. Solnick et al., “Infection with Helicobacter pylori is associated with protection against tuberculosis,” PLoS ONE, vol. 5, no. 1, Article ID e8804, 2010.
[12]  R. Behroozian and E. Moradkhan, “The assessment of probable relationship between lung cancer and Helicobacter pylori infection,” Tropical Gastroenterology, vol. 31, no. 1, pp. 34–36, 2010.
[13]  F. Ece, N. F. Hatabay, N. Erdal, C. Gedik, C. Guney, and F. Aksoy, “Does Helicobacter pylori infection play a role in lung cancer?” Respiratory Medicine, vol. 99, no. 10, pp. 1258–1262, 2005.
[14]  W. Gocyk, T. Nikliński, H. Olechnowicz et al., “Helicobacter pylori, gastrin and cyclooxygenase-2 in lung cancer,” Medical Science Monitor, vol. 6, no. 6, pp. 1085–1092, 2000.
[15]  T. U. Kosunen, E. Pukkala, S. Sarna, K. Seppala, A. Aromaa, et al., “Does eradication of H. pylori infectyion delay the development lung cancer?” in Proceedings of the 22nd International Workshop on Helicobacter and Related Bacteria in Chronic Digestive Inflammation and Gastric Cancer, Blackwell, Porto, Portugal, September 2009.
[16]  K. Najafizadeh, S. Falah Tafti, M. Shiehmorteza, M. Saloor, and M. Jamali, “H pylori seroprevalence in patients with lung cancer,” World Journal of Gastroenterology, vol. 13, pp. 2349–2351, 2007.
[17]  N. Philippou, P. Koursarakos, E. Anastasakou et al., “Helicobacter pylori seroprevalence in patients with lung cancer,” World Journal of Gastroenterology, vol. 10, no. 22, pp. 3342–3344, 2004.
[18]  W. Zhuo, B. Zhu, Z. Xiang, X. Zhuo, L. Cai, and Z. Chen, “Assessment of the relationship between Helicobacter pylori and lung cancer: a meta-analysis,” Archives of Medical Research, vol. 40, no. 5, pp. 406–410, 2009.
[19]  Ottawa Hospital Research Institute, “The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses,” 2011, http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
[20]  J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsistency in meta-analyses,” British Medical Journal, vol. 327, no. 7414, pp. 557–560, 2003.
[21]  C. B. Begg and M. Mazumdar, “Operating characteristics of a rank correlation test for publication bias,” Biometrics, vol. 50, no. 4, pp. 1088–1101, 1994.
[22]  M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in meta-analysis detected by a simple, graphical test,” British Medical Journal, vol. 315, no. 7109, pp. 629–634, 1997.
[23]  D. F. Stroup, J. A. Berlin, S. C. Morton et al., “Meta-analysis of observational studies in epidemiology: a proposal for reporting,” Journal of the American Medical Association, vol. 283, no. 15, pp. 2008–2012, 2000.
[24]  U. Thalmaier, N. Lehn, K. Pfeffer, M. Stolte, M. Vieth, and W. Schneider-Brachert, “Role of tumor necrosis factor alpha in Helicobacter pylori gastritis in tumor necrosis factor receptor 1-deficient mice,” Infection and Immunity, vol. 70, no. 6, pp. 3149–3155, 2002.
[25]  I. C. Arnold, N. Dehzad, S. Reuter et al., “Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells,” Journal of Clinical Investigation, vol. 121, no. 8, pp. 3088–3093, 2011.
[26]  S. Yokota, T. Okabayashi, M. Rehli, N. Fujii, and K. Amano, “Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway,” Infection and Immunity, vol. 78, no. 1, pp. 468–476, 2010.
[27]  A. Frankel, M. Tsao, and J. Viallet, “Receptor subtype expression and responsiveness to bombesin in cultured human bronchial epithelial cells,” Cancer Research, vol. 54, no. 7, pp. 1613–1616, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133