全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recognition of Errors in the Refinement and Validation of Three-Dimensional Structures of AC1 Proteins of Begomovirus Strains by Using ProSA-Web

DOI: 10.1155/2014/752656

Full-Text   Cite this paper   Add to My Lib

Abstract:

The structural model of begomovirus AC1 protein is useful for understanding biological function at molecular level and docking study. For this study we have used the ProSA program (Protein Structure Analysis) tool to establish the structure prediction and modeling of protein. This tool was used for refinement and validation of experimental protein structures. Potential problems of protein structures based on energy plots are easily seen by ProSA and are displayed in a three-dimensional manner. In the present study we have selected different AC1 proteins of begomovirus strains (YP_003288785, YP_002004579, and YP_003288773) for structural analysis and display of energy plots that highlight potential problems spotted in protein structures. The 3D models of Rep proteins with recognized errors can be effectively used for in silico docking study for development of potential ligand molecules against begomovirus infection. 1. Introduction Geminiviruses were recognized in 1978 by the International Committee on the Taxonomy of viruses on the basis of their unique virion morphology and possession of ssDNA as their genomic material [1, 2]. Geminiviridae is one of the largest plant virus family; its members have a circular, single-stranded DNA (ssDNA) genome of approximately 2.7–5.2?kb encapsulated within twinned (geminate) icosahedral virions. The protein coat of geminiviridae consists of one type protein molecule of about 28?kd molecular weight. Based on their genome arrangement and biological properties, geminiviruses are classified into one of four genera: Mastrevirus, Curtovirus, Topocuvirus, and Begomovirus [3]. Begomoviruses, currently hold 200 species [4] and contain dicotyledonous infecting whitefly transmitted viruses in the family Geminiviridae, have either bipartite genomes (DNA-A and DNA-B) or monopartite genomes resembling DNA-A. DNA-A typically has six open reading frames (ORFs): AV1/V1 (coat protein, CP) and AV2/V2 (AV2/V2 protein) on the virion-sense strand and AC1/C1 (replication initiation protein, Rep), AC2/C2 (transcriptional activator, TrAP), AC3/C3 (replication enhancer, REn), and AC4/C4 (AC4/C4 protein) on the complementary-sense strand. DNA-B has two ORFs, encoding movement proteins: BV1 (nuclear shuttle protein, NSP) on the virus-sense strand and BC1 (movement protein, MP) on the complementary-sense strand [5]. Computational methods can be applied for the prediction of unknown structures of experimental and theoretical models of virus proteins [6, 7], but the problem in structural biology is the recognition of errors in experimental and

References

[1]  R. E. Matthews, “Classification and nomenclature of viruses,” Intervirology, vol. 12, no. 3–5, pp. 129–296, 1979.
[2]  R. M. Goodman, “Geminiviruses,” Journal of General Virology, vol. 54, pp. 9–21, 1981.
[3]  J. Stanley, D. M. Bisaro, R. W. Briddon et al., “Family Geminiviridae,” in Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 301–326, Academic Press, 2005.
[4]  C. M. Fauquet, R. W. Briddon, J. K. Brown et al., “Geminivirus strain demarcation and nomenclature,” Archives of Virology, vol. 153, no. 4, pp. 783–821, 2008.
[5]  M. R. Rojas, C. Hagen, W. J. Lucas, and R. L. Gilbertson, “Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses,” Annual Review of Phytopathology, vol. 43, pp. 361–394, 2005.
[6]  A. Marwal, A. Sahu, R. Prajapat, D. K. Choudhary, and R. K. Gaur, “Molecular and recombinational characterization of begomovirus infecting an ornamental plant Alternanthera sessilis: a new host of Tomato Leaf Curl Kerala Virus reported in India,” Science International, vol. 1, pp. 51–56, 2013.
[7]  R. Prajapat, A. Marwal, A. Sahu, and R. K. Gaur, “Molecular in silico structure and recombination analysis of betasatellite in Calotropis procera associated with begomovirus,” Archives of Phytopathology and Plant Protection, vol. 45, pp. 1980–1990, 2012.
[8]  A. Marwal, A. Sahu, R. Prajapat, D. K. Choudhary, and R. K. Gaur, “First report of association of begomovirus with the leaf curl disease of a common weed Datura inoxia,” Indian Journal of Virology, vol. 23, pp. 83–84, 2012.
[9]  R. Prajapat, A. Marwal, A. Sahu, and R. K. Gaur, “First report of Begomovirus infecting Sonchus asper in India,” Science International, vol. 1, pp. 108–110, 2013.
[10]  J. A. Fox, S. McMillan, and B. F. F. Ouellette, “A compilation of molecular biology web servers: 2006 update on the Bioinformatics links directory,” Nucleic Acids Research, vol. 34, pp. W3–W5, 2006.
[11]  H. M. Berman, S. K. Burley, W. Chiu et al., “Outcome of a workshop on archiving structural models of biological macromolecules,” Structure, vol. 14, no. 8, pp. 1211–1217, 2006.
[12]  M. J. Sippl, “Recognition of errors in three-dimensional structures of proteins,” Proteins, vol. 17, no. 4, pp. 355–362, 1993.
[13]  L. Banci, I. Bertini, F. Cantini et al., “Solution structure and intermolecular interactions of the third metal-binding domain of ATP7A, the Menkes disease protein,” The Journal of Biological Chemistry, vol. 281, no. 39, pp. 29141–29147, 2006.
[14]  O. Llorca, M. Betti, J. M. González, A. Valencia, A. J. Márquez, and J. M. Valpuesta, “The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure,” Journal of Structural Biology, vol. 156, no. 3, pp. 469–479, 2006.
[15]  K. Teilum, J. C. Hoch, V. Goffin, S. Kinet, J. A. Martial, and B. B. Kragelund, “Solution structure of human prolactin,” Journal of Molecular Biology, vol. 351, no. 4, pp. 810–823, 2005.
[16]  D. Petrey and B. Honig, “Protein structure prediction: inroads to biology,” Molecular Cell, vol. 20, no. 6, pp. 811–819, 2005.
[17]  K. Ginalski, “Comparative modeling for protein structure prediction,” Current Opinion in Structural Biology, vol. 16, no. 2, pp. 172–177, 2006.
[18]  R. Panteri, A. Paiardini, and F. Keller, “A 3D model of Reelin subrepeat regions predicts Reelin binding to carbohydrates,” Brain Research, vol. 1116, no. 1, pp. 222–230, 2006.
[19]  J. Mansfeld, S. Gebauer, K. Dathe, and R. Ulbrich-Hofmann, “Secretory phospholipase A2 from Arabidopsis thaliana: insights into the three-dimensional structure and the amino acids involved in catalysis,” Biochemistry, vol. 45, no. 18, pp. 5687–5694, 2006.
[20]  M. K. Beissenhirtz, F. W. Scheller, M. S. Viezzoli, and F. Lisdat, “Engineered superoxide dismutase monomers for superoxide biosensor applications,” Analytical Chemistry, vol. 78, no. 3, pp. 928–935, 2006.
[21]  M. Wiederstein and M. J. Sippl, “Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials,” Journal of Molecular Biology, vol. 345, no. 5, pp. 1199–1212, 2005.
[22]  M. Wiederstein and M. J. Sippl, “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins,” Nucleic Acids Research, vol. 35, pp. W407–W410, 2007.
[23]  R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, pp. 283–291, 1993.
[24]  K. M. Goh, N. M. Mahadi, O. Hassan, R. N. Zaliha, R. A. Rahman, and R. M. Illias, “Molecular modeling of a predominant β-CGTase G1 and analysis of ionic interaction in CGTase,” Biotechnology, vol. 7, no. 3, pp. 418–429, 2008.
[25]  S. C. Lovell, I. W. Davis, W. B. Arendall et al., “Structure validation by Cα geometry: φ,ψ and Cβ deviation,” Proteins, vol. 50, no. 3, pp. 437–450, 2003.
[26]  J. Xiao, Z. Li, M. Sun, Y. Zhang, and C. Sun, “Homology modeling and molecular dynamics study of GSK3/SHAGGY-like kinase,” Computational Biology and Chemistry, vol. 28, no. 3, pp. 179–188, 2004.
[27]  G. Chang and C. B. Roth, “Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters,” Science, vol. 293, no. 5536, pp. 1793–1800, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133