全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HLA-B*44 Is Associated with Dengue Severity Caused by DENV-3 in a Brazilian Population

DOI: 10.1155/2013/648475

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human leukocyte antigen (HLA) alleles have been correlated with susceptibility or resistance to severe dengue; however, few immunogenetic studies have been performed in Latin American (LA) populations. We have conducted immunogenetic studies of HLA class I and II alleles in a cohort of 187 patients with DENV-3 infection and confirmed clinical diagnosis of either severe dengue, known as dengue hemorrhagic fever (DHF), or the less severe form, dengue fever (DF), in Recife, Pernambuco, Brazil. An association analysis was performed using Fisher’s association test, with odds ratios (ORs) calculated using conditional maximum likelihood estimates. HLA-B*44 ( , OR = 2.025, 95% CI = 0.97–4.24) was found to be associated with increased susceptibility to DHF in response to DENV-3 infection. In addition, HLA-B*07 ( , OR = 0.501, one-sided 95% CI = 0–0.99) and HLA-DR*13 ( , OR = 0.511, one-sided 95% CI = 0–0.91) were found to be associated with resistance to secondary dengue infection by DENV-3. These results suggest that HLA-B*44 supertype alleles and their respective T-cell responses might be involved in susceptibility to severe dengue infections, whereas the HLA-B*07 supertype alleles and DR*13 might be involved in cross-dengue serotype immunity. 1. Introduction Dengue virus (DENV) has four serotypes, named as DENV-1, DENV-2, DENV-3 and DENV-4. The majority of dengue infections are subclinical; however, the clinical manifestations of dengue infection range from the benign, self-limited dengue fever (DF) to a vasculopathy syndrome known as dengue hemorrhagic fever (DHF) that can lead to hypovolemic dengue shock syndrome (DSS). It is often observed in epidemiological studies that the more severe illness occurs more frequently in secondary heterotypic dengue infection [1–7]. There are two main hypotheses to explain the higher frequency of DHF in secondary infections. The first is that heterotypic antibodies would bind to the dengue virus and would facilitate the viral entry into cells expressing Fc receptors; this theory is known as antibody dependent enhancement (ADE) [8, 9]. The second hypothesis is that anti-dengue memory T cells that cross-react with related but altered peptide epitopes would induce the T cells to produce abnormal levels of cytokines leading to vasculopathy. This theory is known as “original antigenic sin” (OAS) or “altered peptide ligand” (APL). The theories are not mutually exclusive, and both are based on the fact that previous dengue infection is a risk factor for developing more severe disease. However, 99% or more of the secondary dengue

References

[1]  S. B. Halstead, “Pathogenisis of dengue: challenges to molecular biology,” Science, vol. 239, no. 4839, pp. 476–481, 1988.
[2]  M. M. Mangada, T. P. Endy, A. Nisalak et al., “Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren,” Journal of Infectious Diseases, vol. 185, no. 12, pp. 1697–1703, 2002.
[3]  M. M. Mangada and A. L. Rothman, “Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes,” Journal of Immunology, vol. 175, no. 4, pp. 2676–2683, 2005.
[4]  J. Mongkolsapaya, W. Dejnirattisai, X. N. Xu et al., “Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever,” Nature Medicine, vol. 9, no. 7, pp. 921–927, 2003.
[5]  J. Mongkolsapaya, T. Duangchinda, W. Dejnirattisai et al., “T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal?” Journal of Immunology, vol. 176, no. 6, pp. 3821–3829, 2006.
[6]  A. P. Durbin and S. S. Whitehead, “Dengue vaccine candidates in development,” Current Topics in Microbiology and Immunology, vol. 338, no. 1, pp. 129–143, 2010.
[7]  T. P. Endy, A. Nisalak, S. Chunsuttitwat et al., “Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand,” Journal of Infectious Diseases, vol. 189, no. 6, pp. 990–1000, 2004.
[8]  D. J. Gubler, “Dengue and dengue hemorrhagic fever,” Clinical Microbiology Reviews, vol. 11, no. 3, pp. 480–496, 1998.
[9]  S. Wang, R. He, J. Patarapotikul, B. L. Innis, and R. Anderson, “Antibody-enhanced binding of dengue-2 virus to human platelets,” Virology, vol. 213, no. 1, pp. 254–257, 1995.
[10]  K. I. Yamada, T. Takasaki, M. Nawa, and I. Kurane, “Virus isolation as one of the diagnostic methods for dengue virus infection,” Journal of Clinical Virology, vol. 24, no. 3, pp. 203–209, 2002.
[11]  S. B. Halstead, “Dengue in the Americas and Southeast Asia: do they differ?” Revista Panamericana de Salud Publica, vol. 20, no. 6, pp. 407–415, 2006.
[12]  S. B. Halstead, J. E. Scanlon, P. Umpaivit, and S. Udomsakdi, “Dengue and chikungunya virus infection in man in Thailand, 1962–1964. IV. Epidemiologic studies in the Bangkok metropolitan area,” American Journal of Tropical Medicine and Hygiene, vol. 18, no. 6, pp. 997–1021, 1969.
[13]  A. Balmaseda, S. N. Hammond, L. Perez, et al., “Serotype-specific differences in clinical manifestations of dengue,” The American Journal of Tropical Medicine and Hygiene, vol. 74, pp. 449–456, 2006.
[14]  A. Méndez and G. González, “Dengue haemorrhagic fever in children: ten years of clinical experience,” Biomedica, vol. 23, no. 2, pp. 180–193, 2003.
[15]  I. Rodriguez-Barraquer, M. T. Cordeiro, C. Braga, W. V. de Souza, E. T. Marques, and D. A. T. Cummings, “From re-emergence to hyperendemicity: the natural history of the dengue epidemic in Brazil,” PLoS Neglected Tropical Diseases, vol. 5, no. 1, article e935, 2011.
[16]  G. P. Kouri, M. G. Guzman, J. R. Bravo, and C. Triana, “Dengue haemorrhagic fever/dengue shock syndrome: lessons from the Cuban epidemic, 1981,” Bulletin of the World Health Organization, vol. 67, no. 4, pp. 375–380, 1989.
[17]  S. B. Halstead, T. G. Streit, J. G. Lafontant et al., “Haiti: Absence of dengue hemorrhagic fever despite hyperendemic dengue virus transmission,” American Journal of Tropical Medicine and Hygiene, vol. 65, no. 3, pp. 180–183, 2001.
[18]  H. Loke, D. Bethell, C. X. T. Phuong et al., “Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin D receptor and FCγ receptor IIA genes,” American Journal of Tropical Medicine and Hygiene, vol. 67, no. 1, pp. 102–106, 2002.
[19]  B. Acioli-Santos, L. Segat, R. Dhalia et al., “MBL2 Gene polymorphisms protect against development of thrombocytopenia associated with severe dengue phenotype,” Human Immunology, vol. 69, no. 2, pp. 122–128, 2008.
[20]  A. Sakuntabhai, C. Turbpaiboon, I. Casadémont et al., “A variant in the CD209 promoter is associated with severity of dengue disease,” Nature Genetics, vol. 37, no. 5, pp. 507–513, 2005.
[21]  R. Soundravally and S. L. Hoti, “Immunopathogenesis of dengue hemorrhagic fever and shock syndrome: role of TAP and HPA gene polymorphism,” Human Immunology, vol. 68, no. 12, pp. 973–979, 2007.
[22]  R. Soundravally and S. L. Hoti, “Polymorphisms of the TAP 1 and 2 gene may influence clinical outcome of primary dengue viral infection,” Scandinavian Journal of Immunology, vol. 67, no. 6, pp. 618–625, 2008.
[23]  S. Vejbaesya, P. Luangtrakool, K. Luangtrakool et al., “TNF and LTA gene, allele, and extended HLA haplotype associations with severe dengue virus infection in ethnic Thais,” Journal of Infectious Diseases, vol. 199, no. 10, pp. 1442–1448, 2009.
[24]  A. Mathew, I. Kurane, S. Green et al., “Impaired T cell proliferation in acute dengue infection,” Journal of Immunology, vol. 162, no. 9, pp. 5609–5615, 1999.
[25]  T. H. Nguyen, H. Y. Lei, T. L. Nguyen, et al., “Dengue hemorrhagic fever in infants: A Study of Clinical and Cytokine Profiles,” Journal of Infectious Diseases, vol. 189, no. 2, pp. 221–232, 2004.
[26]  K. S. Myint, T. P. Endy, D. Mongkolsirichaikul et al., “Cellular immune activation in children with acute dengue virus infections is modulated by apoptosis,” Journal of Infectious Diseases, vol. 194, no. 5, pp. 600–607, 2006.
[27]  H. Loke, D. B. Bethell, C. X. T. Phuong et al., “Strong HLA class I-restricted T cell responses in dengue hemorrhagic fever: a double-edged sword?” Journal of Infectious Diseases, vol. 184, no. 11, pp. 1369–1373, 2001.
[28]  H. A. F. Stephens, R. Klaythong, M. Sirikong et al., “HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais,” Tissue Antigens, vol. 60, no. 4, pp. 309–318, 2002.
[29]  P. Chiewsilp, R. M. Scott, and N. Bhamarapravati, “Histocompatibility antigens and dengue hemorrhagic fever,” American Journal of Tropical Medicine and Hygiene, vol. 30, no. 5, pp. 1100–1105, 1981.
[30]  C. LaFleur, J. Granados, G. Vargas-Alarcon et al., “HLA-DR antigen frequencies in Mexican patients with dengue virus infection: HLA-DR4 as a possible genetic resistance factor for dengue hemorrhagic fever,” Human Immunology, vol. 63, no. 11, pp. 1039–1044, 2002.
[31]  M. L. Paradoa Pérez, Y. Trujillo, and P. Basanta, “Association of dengue hemorrhagic fever with the HLA system,” Haematologia, vol. 20, no. 2, pp. 83–87, 1987.
[32]  M. T. Cordeiro, U. Braga-Neto, R. M. R. Nogueira, and E. T. A. Marques, “Reliable classifier to differentiate primary and secondary acute dengue infection based on IgG ELISA,” PLoS ONE, vol. 4, no. 4, article e4945, 2009.
[33]  E. T. A. Marques, R. Maciel Filho, and P. N. August, “Overcoming health inequity: potential benefits of a patient-centered open-source public health infostructure,” Cadernos de Saude Publica, vol. 24, no. 3, pp. 547–557, 2008.
[34]  A. Igarashi, “Isolation of a Singh's Aedes albopictus cell clone sensitive to dengue and Chikungunya viruses,” Journal of General Virology, vol. 40, no. 3, pp. 531–544, 1978.
[35]  R. S. Lanciotti, C. H. Calisher, D. J. Gubler, G. J. Chang, and A. V. Vorndam, “Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction,” Journal of Clinical Microbiology, vol. 30, no. 3, pp. 545–551, 1992.
[36]  OPAS, Dengue y Dengue Hemorrágico en Las Américas: Guías Para su Prevención y Control, Organización Panamericana de la Salud, Washington, DC, USA, 1995.
[37]  M. Bunce, C. M. O'Neill, M. C. N. M. Barnardo et al., “Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 and DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP),” Tissue Antigens, vol. 46, no. 5, pp. 355–367, 1995.
[38]  O. Olerup and H. Zetterquist, “HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation,” Tissue Antigens, vol. 39, no. 5, pp. 225–235, 1992.
[39]  P. Louzada, N. H. Deghaide, M. B. Araujo, et al., “Immunobiology of the human MHC,” in Proceedings of the 13th International Histocompatibility Workshop and Conference, J. A. Hansen, Ed., pp. 647–648, 2007.
[40]  F. Williams and D. Middleton, “Immunobiology of the human MHC,” in Proceedings of the 13th International Histocompatibility Workshop and Conference, J. A. Hansen, Ed., pp. 646–647, 2007.
[41]  S. Hatch, T. P. Endy, S. Thomas et al., “Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection,” Journal of Infectious Diseases, vol. 203, no. 9, pp. 1282–1291, 2011.
[42]  S. Shresta, J. L. Kyle, H. M. Snider, M. Basavapatna, P. R. Beatty, and E. Harris, “Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical,” Journal of Virology, vol. 78, no. 6, pp. 2701–2710, 2004.
[43]  H. H. Lin, S. Ray, S. Tongchusak, E. L. Reinherz, and V. Brusic, “Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research,” BMC Immunology, vol. 9, article 8, 2008.
[44]  A. B. SABIN, “Research on dengue during World War II,” The American Journal of Tropical Medicine and Hygiene, vol. 1, no. 1, pp. 30–50, 1952.
[45]  H. Y. Lei, T. M. Yeh, H. S. Liu, Y. S. Lin, S. H. Chen, and C. C. Liu, “Immunopathogenesis of dengue virus infection,” Journal of Biomedical Science, vol. 8, no. 5, pp. 377–388, 2001.
[46]  I. Zivna, S. Green, D. W. Vaughn et al., “T cell responses to an HLA-B*07-restricted epitope on the dengue NS3 protein correlate with disease severity,” Journal of Immunology, vol. 168, no. 11, pp. 5959–5965, 2002.
[47]  C. P. Simmons, T. Dong, N. V. Chau et al., “Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections,” Journal of Virology, vol. 79, no. 9, pp. 5665–5675, 2005.
[48]  T. Duangchinda, W. Dejnirattisai, S. Vasanawathana et al., “Immunodominant T-cell responses to dengue virus NS3 are associated with DHF,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 39, pp. 16922–16927, 2010.
[49]  S. Green, S. Pichyangkul, D. W. Vaughn et al., “Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever,” Journal of Infectious Diseases, vol. 180, no. 5, pp. 1429–1435, 1999.
[50]  H. A. F. Stephens, “HLA and other gene associations with dengue disease severity,” Current Topics in Microbiology and Immunology, vol. 338, no. 1, pp. 99–114, 2010.
[51]  A. M. Khan, O. Miotto, E. J. M. Nascimento et al., “Conservation and variability of dengue virus proteins: implications for vaccine design,” PLoS Neglected Tropical Diseases, vol. 2, no. 8, article e272, 2008.
[52]  J. Sloan-Lancaster and P. M. Allen, “Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology,” Annual Review of Immunology, vol. 14, pp. 1–27, 1996.
[53]  J. R. Polizel, D. Bueno, J. E. L. Visentainer et al., “Association of human leukocyte antigen DQ1 and dengue fever in a white Southern Brazilian population,” Memorias do Instituto Oswaldo Cruz, vol. 99, no. 6, pp. 559–562, 2004.
[54]  B. Sierra, R. Alegre, A. B. Pérez et al., “HLA-A, -B, -C, and -DRB1 allele frequencies in Cuban individuals with antecedents of dengue 2 disease: advantages of the Cuban population for HLA studies of dengue virus infection,” Human Immunology, vol. 68, no. 6, pp. 531–540, 2007.
[55]  T. P. Nguyen, M. Kikuchi, T. Q. Vu et al., “Protective and enhancing HLA alleles, HLA-DRB1*0901 and HLA-A*24, for severe forms of dengue virus infection, dengue hemorrhagic fever and dengue shock syndrome,” PLoS Neglected Tropical Diseases, vol. 2, no. 10, article e304, 2008.
[56]  G. N. Malavige, T. Rostron, L. T. Rohanachandra et al., “HLA class I and class II associations in Dengue viral infections in a Sri Lankan population,” PLoS ONE, vol. 6, no. 6, article e20581, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133