全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Outcome and Challenges of Kidney Transplant in Patients with Sickle Cell Disease

DOI: 10.1155/2013/614610

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sickle cell nephropathy is a common presentation in patients with sickle cell disease. End-stage kidney disease is the most severe presentation of sickle cell nephropathy in terms of morbidity and mortality. Sickle cell disease patients with end-stage kidney disease are amenable to renal replacement therapy including kidney transplant. Kidney transplant in these patients has been associated with variable outcome with recent studies reporting short- and long-term outcomes comparable to that of patients with HbAA. Sickle cell disease patients are predisposed to various haematological, cardiorespiratory, and immunological challenges. These challenges have the potential to limit, delay, or prevent kidney transplant in patients with sickle cell disease. There are few reports on the outcome and challenges of kidney transplant in this group of patients. The aim of this review is to highlight the outcome and challenges of kidney transplant in patients with sickle cell disease. 1. Introduction Sickle cell disease (SCD) is a haematological disorder associated with multisystemic complications and manifestations [1]. There had been significant improvement in the outlook of adults with sickle cell disease. The Cooperative Study of Sickle Cell Disease (CSSCD) and other observational studies had helped to define the prognosis and common complications that occur as the patient ages. Improvement in management of infections and central nervous system (CNS) complications in childhood, active health maintenance for adults, new interventions, and improved psychosocial support have all contributed to a reduction in morbidity and mortality. More than 90 percent of patients of all phenotypes will survive for more than 20 years, and significant numbers are older than age of 50 years [1]. Thus, chronic and long-term complications associated with SCD including sickle cell nephropathy/end stage renal disease (ESRD) are becoming common. Treatment of sickle cell nephropathy is fraught with many challenges and has variable outcome. Renal replacement therapy is required in patients with uraemia, circulatory overload, pulmonary oedema, and ESRD. Kidney transplant is the treatment of choice for eligible patients with ESRD. However, kidney transplant is not readily available in most of the developing countries because of cost, poverty, few transplant centres, and lack of donors [2]. SCD and prevailing complications worsen these challenges, further limiting kidney transplant in these patients. The aim of this study is to review the available literature highlighting the outcome and

References

[1]  O. S. Platt, D. J. Brambilla, W. F. Rosse et al., “Mortality in sickle cell disease. Life expectancy and risk factors for early death,” The New England Journal of Medicine, vol. 330, no. 23, pp. 1639–1644, 1994.
[2]  U. H. Okafor, I. Ekwem, and F. S. Wokoma, “Challenges of kidney care in a resource poor nation: a study of private kidney care centre in Nigeria,” Nigerian Medical Journal, vol. 53, pp. 47–50, 2012.
[3]  L. W. Status van Eps, Sickle cell disease. Atlas of kidney disease; CD Rom, pp. 1–22, 2004.
[4]  V. K. Derebail, P. H. Nachman, N. S. Key, H. Ansede, R. J. Falk, and A. V. Kshirsagar, “High prevalence of sickle cell trait in African Americans with ESRD,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 413–417, 2010.
[5]  L. Fran?ois, H. Nadjib, S. S. Katia, et al., “Hemoglobin SC disease complications: a clinical study of 179 cases,” Haematologica, vol. 97, no. 8, pp. 1136–1141, 2012.
[6]  R. J. Falk, J. L. Scheinman, G. I. Phillips, E. Orringer, A. Johnson, and J. C. Jennette, “Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme,” The New England Journal of Medicine, vol. 326, no. 14, pp. 910–915, 1992.
[7]  J. I. Scheinman, “Tools to detect and modify sickle cell nephropathy,” Kidney International, vol. 69, no. 11, pp. 1927–1930, 2006.
[8]  K. C. Abbott, I. O. Hypolite, and L. Y. Agodoa, “Sickle cell nephropathy at end-stage renal disease in the United States: patient characteristics and survival,” Clinical Nephrology, vol. 58, no. 1, pp. 9–15, 2002.
[9]  R. A. Bolarinwa, K. S. Akinlade, M. A. O. Kuti, O. O. Olawale, and N. O. Akinola, “Renal disease in adult Nigerians with sickle cell anaemia: a report of prevalence, clinical features and risk features,” Saudi Journal of Kidney Diseases and Transplantation, vol. 23, no. 1, pp. 171–175, 2012.
[10]  P. T. T. Pham, P. C. T. Pham, A. H. Wilkinson, and S. Q. Lew, “Renal abnormalities in sickle cell disease,” Kidney International, vol. 57, no. 1, pp. 1–8, 2000.
[11]  J. N. Etteldorf, A. H. Tuttle, and G. W. Clayton, “Renal function studies in pediatrics,” American Journal of Diseases of Children, vol. 83, pp. 185–191, 1952.
[12]  A. G. Morgan and G. R. Serjeant, “Renal function in patients over 40 with homozygous sickle-cell disease,” British Medical Journal, vol. 282, no. 6271, pp. 1181–1183, 1981.
[13]  P. E. De Jong and L. W. Statius van Eps, “Sickle cell nephropathy: new insights into its pathophysiology,” Kidney International, vol. 27, pp. 711–717, 1985.
[14]  G. A. O. Alleyne, L. W. Statius van Eps, S. K. Addac, G. D. Nicholson, and H. Schouten, “The kidney in sickle cell anemia,” Kidney International, vol. 7, pp. 371–379, 1975.
[15]  L. W. Statius van Eps and P. E. De Jong, “Sickle cell disease,” in Diseases of the Kidney, R. W. Schrier and C. Gottschalk, Eds., pp. 2201–2219, Little Brown, Boston, Mass, USA, 6th edition, 1997.
[16]  M. Allon, “Renal abnormalities in sickle cell disease,” Archives of Internal Medicine, vol. 150, no. 3, pp. 501–504, 1990.
[17]  C. A. Vaamonde, “Renal papillary necrosis in sickle cell hemoglobinopathies,” Seminars in Nephrology, vol. 4, no. 1, pp. 48–64, 1984.
[18]  G. R. Serjeant, Sickle Cell Disease, Oxford University Press, 1992.
[19]  L. Foucan, “A randomized trial of captopril for microalbuminuria in normotensive adults with sickle cell anemia,” American Journal of Medicine, vol. 104, no. 4, pp. 339–342, 1998.
[20]  D. R. Powars, D. D. Elliott-Mills, L. Chan et al., “Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality,” Annals of Internal Medicine, vol. 115, no. 8, pp. 614–620, 1991.
[21]  F. K. Port and A. R. Nissenson, “Outcome of end-stage renal disease in patients with rare causes of renal failure. II. Renal or systemic neoplasms,” Quarterly Journal of Medicine, vol. 73, no. 272, pp. 1161–1165, 1989.
[22]  W. H. Barber, M. H. Deierhol, B. A. Julian, et al., “Renal transplantation in sickle cell anaemia and sickle cell trait,” Clinical Transplantation, vol. 1, pp. 169–175, 1987.
[23]  R. Montgomery, G. Zibari, G. S. Hill, and L. E. Ratner, “Renal transplantation in patients with sickle cell nephropathy,” Transplantation, vol. 58, no. 5, pp. 618–620, 1994.
[24]  S. N. Chatterjee, “National study on natural history of renal allografts in sickle cell disease or trait,” Nephron, vol. 25, no. 4, pp. 199–201, 1980.
[25]  S. N. Chatterjee, “National study in natural history of renal allografts in sickle cell disease or trait: a second report,” Transplantation Proceedings, vol. 19, no. 2, supplement 2, pp. 33–35, 1987.
[26]  NIH publications, The Management of Sickle Cell Disease: Renal Abnormalities in Sickle Cell Disease, chapter 19, 4th edition, 2002.
[27]  D. J. Miner, D. K. Jorkasky, L. J. Perloff, R. A. Grossman, and J. E. Tomaszewski, “Recurrent sickle cell nephropathy in a transplanted kidney,” American Journal of Kidney Diseases, vol. 10, no. 4, pp. 306–313, 1987.
[28]  A. J. Bleyer, L. A. Donaldson, M. McIntosh, and P. L. Adams, “Relationship between underlying renal disease and renal transplantation outcome,” American Journal of Kidney Diseases, vol. 37, no. 6, pp. 1152–1161, 2001.
[29]  B. A. Warady and E. K. Sullivan, “Renal transplantation in children with sickle cell disease: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS),” Pediatric Transplantation, vol. 2, no. 2, pp. 130–133, 1998.
[30]  D. Spector, J. B. Zachary, S. Sterioff, and J. Millan, “Painful crises following renal transplantation in sickle cell anemia,” American Journal of Medicine, vol. 64, no. 5, pp. 835–839, 1978.
[31]  A. O. Ojo, T. C. Govaerts, R. L. Schmouder et al., “Renal transplantation in end-stage sickle cell nephropathy,” Transplantation, vol. 67, no. 2, pp. 291–295, 1999.
[32]  E. J. O'Rourke, C. M. Laing, A. U. Khan et al., “The case | Allograft dysfunction in a patient with sickle cell disease,” Kidney International, vol. 74, no. 9, pp. 1219–1220, 2008.
[33]  J. I. Scheinman, “Sickle cell disease and the kidney,” Nature Clinical Practice Nephrology, vol. 5, no. 2, pp. 78–88, 2009.
[34]  L. Kim, M. R. Garfinkel, A. Chang, P. V. Kadambi, and S. M. Meehan, “Intragraft vascular occlusive sickle crisis with early renal allograft loss in occult sickle cell trait,” Human Pathology, vol. 42, no. 7, pp. 1027–1033, 2011.
[35]  U. H. Okafor, C. Wachukwu, P. Emem-Chioma, and F. S. Wokoma, “Kidney transplant in a 26 year old Nigerian patient with sickle cell nephropathy,” Case Reports in Nephrology, vol. 2012, Article ID 406406, 4 pages, 2012.
[36]  D. C. Brennan, B. J. Lippmann, S. Shenoy, J. A. Lowell, T. K. Howard, and M. W. Flye, “Living unrelated renal transplantation for sickle cell nephropathy,” Transplantation, vol. 59, no. 5, pp. 794–795, 1995.
[37]  J. I. Scheinman, “Sickle cell nephropathy,” in Paediatric Neprhology, E. D. Avner, W. E. Harmon, P. Niaudet, and N. Yoshikawa, Eds., pp. 917–930, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2004.
[38]  J. Janik and R. A. Seeler, “Perioperative management of children with sickle hemoglobinopathy,” Journal of Pediatric Surgery, vol. 15, no. 2, pp. 117–120, 1980.
[39]  R. Rutledge, R. D. Croom III, and J. W. Davis, “Cholelithiasis in sickle cell anemia: surgical considerations,” Southern Medical Journal, vol. 79, no. 1, pp. 28–30, 1986.
[40]  J. R. Gibson, “Anesthesia for sickle cell diseases and other hemoglobinopathies,” Sem Anesthesia, vol. 4, pp. 27–35, 1987.
[41]  R. Ware, H. C. Filston, W. H. Schultz, and T. R. Kinney, “Elective cholecystectomy in children with sickle hemoglobinopathies. Successful outcome using a preoperative transfusion regimen,” Annals of Surgery, vol. 208, no. 1, pp. 17–22, 1988.
[42]  D. W. Esseltine, M. R. N. Baxter, and J. C. Bevan, “Sickle cell states and the anaesthetist,” Canadian Journal of Anaesthesia, vol. 35, no. 4, pp. 385–403, 1988.
[43]  G. Bihl, “Kidney transplantation in a patient with sickle cell kidney disease?” Medscape Transplantation, vol. 3, p. 2, 2002.
[44]  P. K. Donnelly, M. E. Edmunds, and K. O'Reilly, “Renal transplantation in sickle cell disease,” The Lancet, vol. 2, no. 8604, p. 229, 1988.
[45]  NIH Publications, The Management of Sickle Cell Disease: Anaesthesia and Surgery, chapter 24, 4th edition, 2002, http://www.nhlbi.nih.gov/.
[46]  H. Martin and M. D. Steinberg, “Management of sickle cell disease,” The New England Journal of Medicine, vol. 340, pp. 1021–1030, 1999.
[47]  L. J. Haywood, “Cardiovascular function and dysfunction in sickle cell anemia,” Journal of the National Medical Association, vol. 101, no. 1, pp. 24–30, 2009.
[48]  W. Covitz, M. Espeland, D. Gallagher, W. Hellenbrand, S. Leff, and N. Talner, “The heart in sickle cell anemia: the cooperative study of sickle cell disease (CSSCD),” Chest, vol. 108, no. 5, pp. 1214–1219, 1995.
[49]  M. Tsironi and A. Aessopos, “The heart in sickle cell disease,” Acta Cardiologica, vol. 60, no. 6, pp. 589–598, 2005.
[50]  L. Leight, T. H. Snider, G. O. Clifford, and H. K. Hellems, “Hemodynamic studies in sickle cell anemia,” Circulation, vol. 10, no. 5, pp. 653–662, 1954.
[51]  A. Gray, E. N. Anionwu, S. C. Davies, and M. Brozovic, “Patterns of mortality in sickle cell disease in the United Kingdom,” Journal of Clinical Pathology, vol. 44, no. 6, pp. 459–463, 1991.
[52]  S. T. Miller, L. A. Sleeper, C. H. Pegelow et al., “Prediction of adverse outcomes in children with sickle cell disease,” The New England Journal of Medicine, vol. 342, no. 2, pp. 83–89, 2000.
[53]  E. P. Vichinsky, L. D. Neumayr, A. N. Earles, et al., “Causes and outcomes of the acute chest syndrome in sickle cell disease,” The New England Journal of Medicine, vol. 342, pp. 1855–1865, 2000.
[54]  Noreen kassem. Systems of the Body Affected by Sickle Cell Anemia, http://www.livestrong.com/.
[55]  P. F. Milner and M. Brown, “Bone marrow infarction in sickle cell anemia: correlation with hematologic profiles,” Blood, vol. 60, no. 6, pp. 1411–1419, 1982.
[56]  E. P. Vichinsky, C. M. Haberkern, L. Neumayr et al., “A comparison of conservative and aggressive transfusion regimens in the perioperative management of sickle cell disease,” The New England Journal of Medicine, vol. 333, no. 4, pp. 206–213, 1995.
[57]  M. A. Leong, C. Dampier, L. Varlotta, and J. L. Allen, “Airway hyperreactivity in children with sickle cell disease,” Journal of Pediatrics, vol. 131, no. 2, pp. 278–285, 1997.
[58]  M. P. Samuels, V. A. Stebbens, S. C. Davies, E. Picton-Jones, and D. P. Southall, “Sleep related upper airway obstruction and hypoxaemia in sickle cell disease,” Archives of Disease in Childhood, vol. 67, no. 7, pp. 925–929, 1992.
[59]  D. Powars, J. A. Weidman, T. Odom-Maryon, J. C. Niland, and C. Johnson, “Sickle cell chronic lung disease: prior morbidity and the risk of pulmonary failure,” Medicine, vol. 67, no. 1, pp. 66–76, 1988.
[60]  W. F. Rosse, D. Gallagher, T. R. Kinney et al., “Transfusion and alloimmunization in sickle cell disease,” Blood, vol. 76, no. 7, pp. 1431–1437, 1990.
[61]  K. E. King, R. S. Shirey, M. W. Lankiewicz, J. Young-Ramsaran, and P. M. Ness, “Delayed hemolytic transfusion reactions in sickle cell disease: simultaneous destruction of recipients' red cells,” Transfusion, vol. 37, no. 4, pp. 376–381, 1997.
[62]  K. M. Sullivan, E. Agura, C. Anasetti et al., “Chronic graft-versus-host disease and other late complications of bone marrow transplantation,” Seminars in Hematology, vol. 28, no. 3, pp. 250–259, 1991.
[63]  N. Jay, M. James, B. Andrew, B. Simon, R. R. Andrew, and G. I. Nicholas, “Sickle cell and renal transplant: a national survey and literature review,” Experimental and Clinical Transplantation, vol. 10, no. 1, pp. 1–7, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133